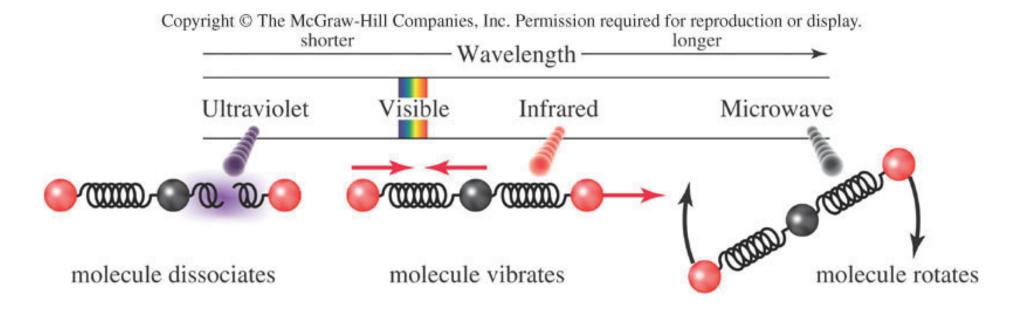
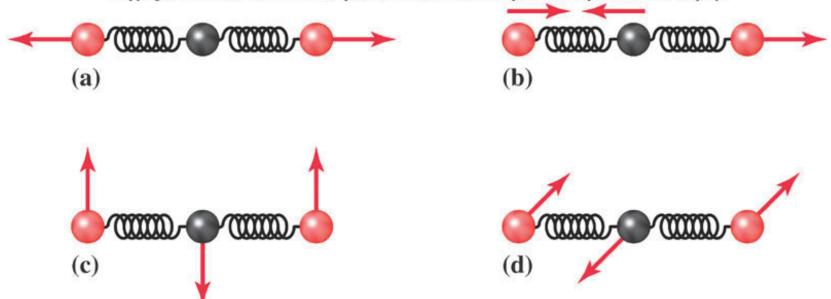
Tentative Course Schedule

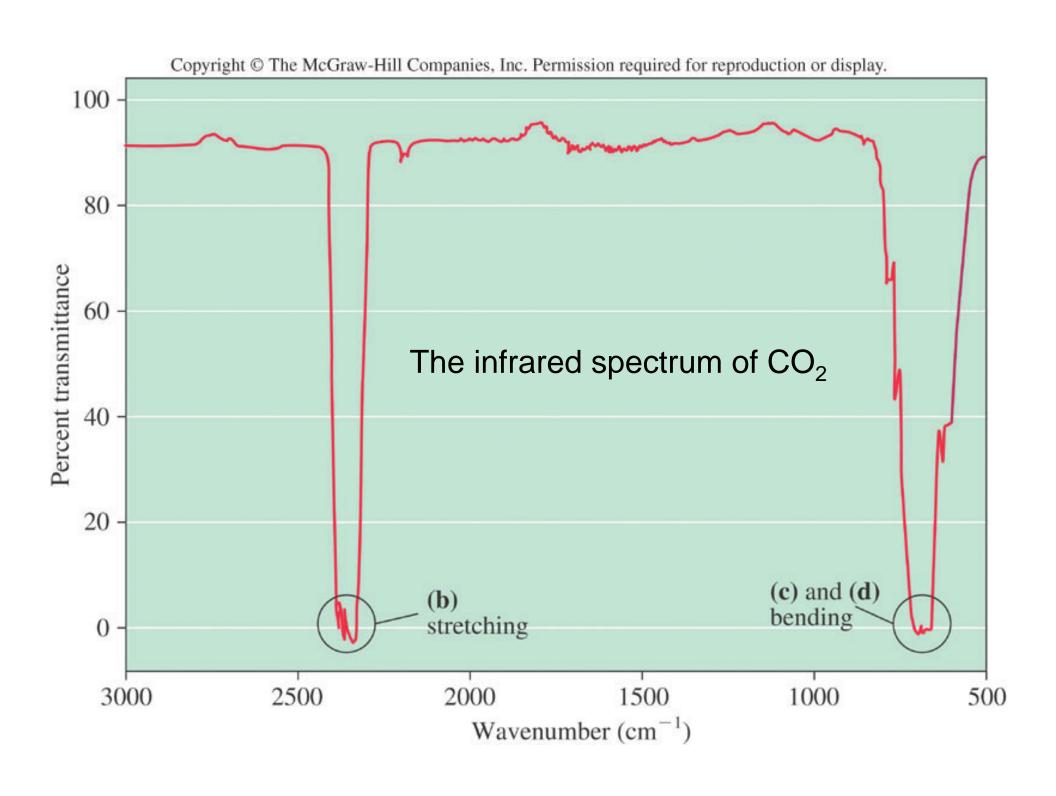
Jan 30	Introduction / The Air We Breathe	Ch 1	Survey
Feb 1	The Air We Breathe	Ch 1	Q 1
Feb 6	The Air We Breathe	Ch 1	
Feb 8	The Air We Breathe	Ch 1	Q 2, HW 1
Feb 13	Protecting the Ozone Layer	Ch 2	
Feb 15	Protecting the Ozone Layer	Ch 2	Q 3, HW 2
Feb 20	Protecting the Ozone Layer	Ch 2	
Feb 22	Exam 1 (Ch 1 and 2)		E 1, HW 3
Feb 27	The Chemistry of Global Warming	Ch 3	
Mar 1	The Chemistry of Global Warming	Ch 3	Q 4, HW 4
Mar 6	The Chemistry of Global Warming	Ch 3	
Mar 8	The Chemistry of Global Warming	Ch 3	Q 5, HW 5
Mar 13	Energy, Chemistry and Society	Ch 4	
Mar 15	Energy, Chemistry and Society	Ch 4	Q 6, HW 6
(March	20 + 22 - no class, Spring Break)		
Mar 27	Energy, Chemistry and Society	Ch 4	
Mar 29	The Water We Drink	Ch 5	Q 7
Apr 3	The Water We Drink (Review)	Ch 5	
Apr 5	Exam 2 (Ch 3, 4, and parts of 5)		E 2, HW 7

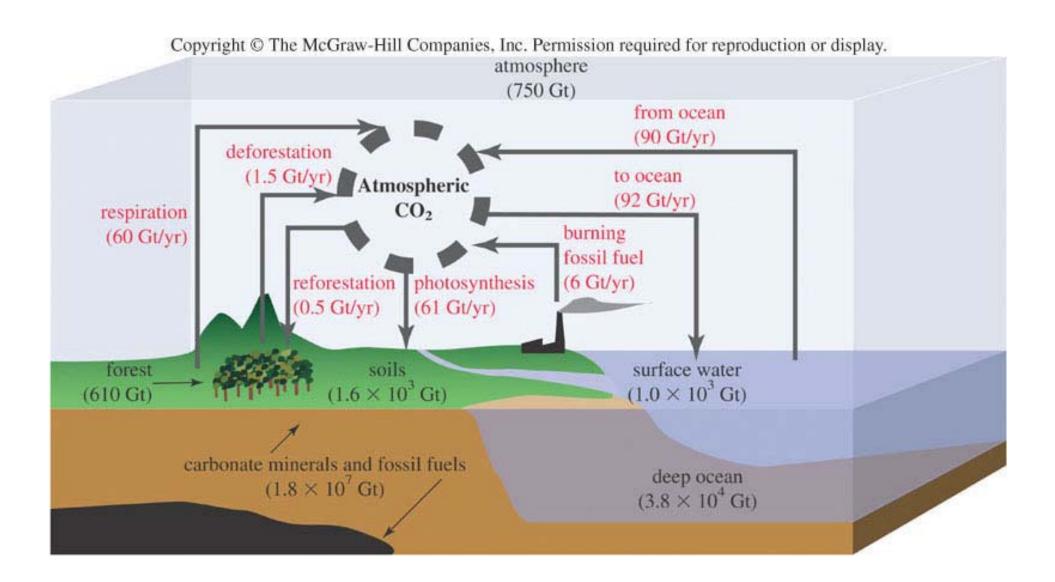
- GreenhouseGases
 - H₂O, CO₂, CH₄
- Not Greenhouse Gases
 - $-N_2$, O_2 , Ar
- Molecular
 Structure
- Molecular Shape





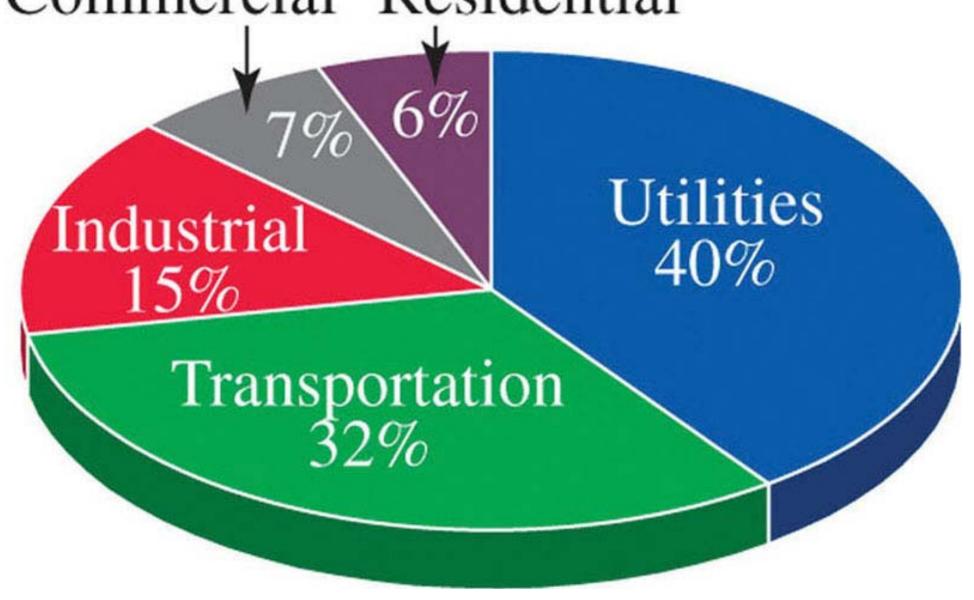
The Interaction of Light with Molecules


Molecular Vibrations in CO₂


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Similarly, each **vibration** of a bond has a given frequency that corresponds to the frequency of IR radiation needed to make it oscillate.

BUT... Not all vibrations absorb infrared radiation!


2	h	П	0	3	4
	v	ш	6	-	31.1

The Earth's Carbon Reservoirs

	Size (Gt Carbon)
Reservoir	
Atmosphere	750
Forests	610
Soils	1,580
Surface ocean	1,020
Deep ocean	38,100
Total carbon, excluding fossil fuels	42,060
Fossil fuels	
Coal	4,000
Oil	500
Natural gas	500
Total fossil fuel	5,000
Total, all sources	47,060

Source: From James F. Kasting, "The Carbon Cycle, Climate, and the Long-Term Effects of Fossil Fuel Burning," *Consequences, The Nature & Implications of Environmental Change*, Vol. 4, No. 1, 1998. Reprinted with permission.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Commercial Residential

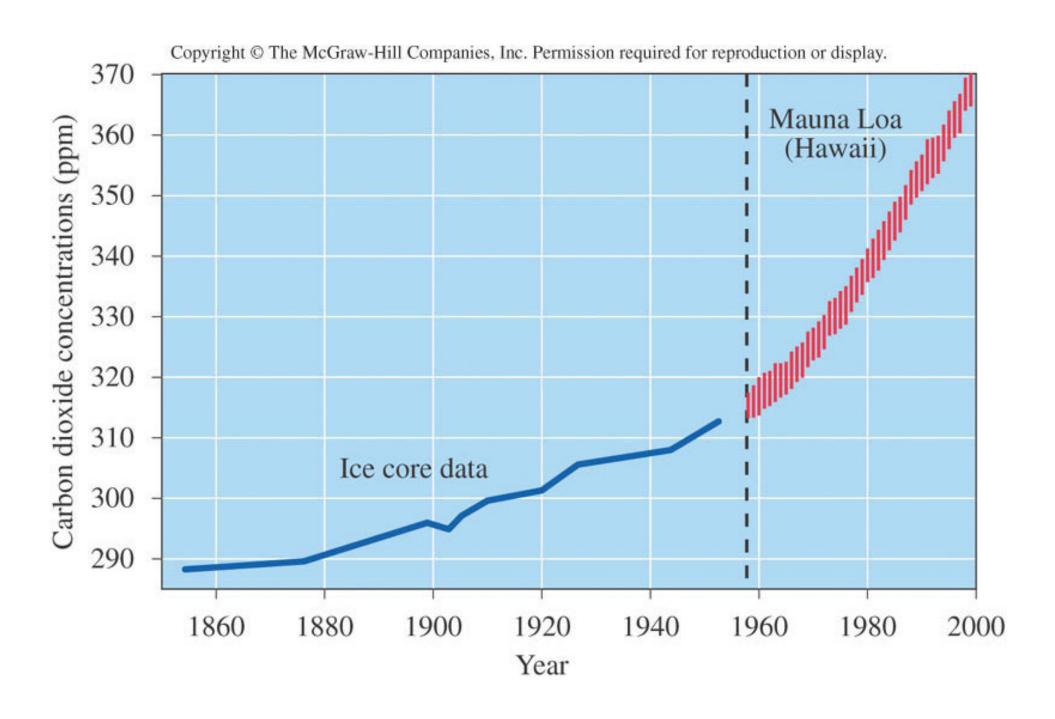


Table 3.2

Human Perturbations to the Global Carbon Budget

	Flux (Gt carbon/year)			
CO ₂ sources				
Fossil fuel combustion and cement production	5.5	0.5		
Tropical deforestation	1.6	1.0		
Total anthropogenic emissions	7.1	1.1		
CO ₂ sinks				
Storage in the atmosphere	3.3	112		
Uptake by the ocean	2.0	0.8		
Northern Hemisphere forest regrowth	0.5	0.5		
Other terrestrial sinks (CO ₂ fertilization,	1.3	1.5		
nitrogen fertilization, climatic effects)				
Total sinks for CO ₂	7.1	1.1		

Source: From James F. Kasting, "The Carbon Cycle, Climate, and the Long-Term Effects of Fossil Fuel Burning," *Consequences, The Nature & Implications of Environmental Change*, Vol. 4, No. 1, 1998. Reprinted with permission.

 3.3 Gt of carbon added to the atmosphere every year.

$$-1 \text{ Gt} = 10^9 \text{ t}$$

$$-1t = 10^3 \text{ kg}$$

$$-1kg = 10^3 g$$

$$-\text{So 1 Gt} = 10^{(9+3+3)} \text{ g} = 10^{15} \text{ g}$$

3.3 x 10¹⁵ g Carbon added to the air each year

Atomic Mass

 ^{12}C

- Mass Number of 12
- Atomic Number of 6
 - 6 Protons
 - 6 Neutrons
- One atom of carbon-12 has a mass of 12 atomic mass units (amu)

1			(Copyright	© The M	cGraw-H	ill Compa	anies, Inc.	Permissi	on require	ed for rep	roduction	or display	γ.			18
1 H 1.008	2 2A				24 Cr 52.00		Atomic n					13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 C1 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Te (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 1 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 T1 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	111	112	113	114	115	(116)	(117)	(118)
	Metals			58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Metalloi	ids		Ce 140.1	Pr 140.9	Nd 144.2	Pm (145)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0
	Nonmet	als		90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

The 1–18 group designation has been recommended by the International Union of Pure and Applied Chemistry (IUPAC) but is not yet in wide use. In this text we use the standard U.S. notation for group numbers (1A–8A and 1B–8B). No names have been assigned for elements 111–115. Elements 116–118 have not yet been synthesized.

 $1 \text{ amu} = 1.66 \times 10^{-24} \text{ g}$

Carbon weighs 12.01 amu, so one carbon atom weighs

$$12.01 \, amu \, C \times \frac{1.66 \times 10^{-24} \, g}{1 \, amu} = 1.99 \times 10^{-23} \, g \, C$$

- How about carbon dioxide?
 - Each molecule contains 1 carbon atom and 2 oxygen atoms
 - The mass of one molecule of CO_2 = mass of 1 carbon atom plus mass of 2 oxygen atoms

$$m_{CO_2} = m_C + 2m_O = 12.01 amu + 2(16.00 amu) = 44.01 amu$$

$$44.01 \, amu \times \frac{1.66 \times 10^{-24} \, g}{1 \, amu} = 7.30 \times 10^{-23} \, g$$

If we have 0.1 mg of CO₂, how many atoms does that contain?

$$0.1mg\ CO_2 \times \frac{1\ g}{1000\ mg} \times \frac{1\ molecule\ CO_2}{7.30 \times 10^{-23}\ gCO_2} = 1.37 \times 10^{18}\ molecule\ CO_2$$

 Atomic Mass – defined as the mass in grams of the same number of atoms that are found in 12 g of carbon-12.

$$12.00g CO_2 \times \frac{1 atom C}{1.99 \times 10^{-23} g C} = 6.02 \times 10^{23} atoms of C$$

- This number is defined as Avogadro's Number
- $N_A = 6.02 \times 10^{23}$

- If you have Avogadro's number of ANYTHING you have a MOLE of whatever you are counting. (Think "dozen")
 - If you have 6.02 x 10²³ golf balls then you have a mole of golf balls.
 - If you have 6.02 x 10²³ carbon atoms then you have a mole of carbon atoms.
 - If you have 6.02 x 10²³ carbon dioxide molecules then you have a mole of carbon dioxide molecules.

- Molar Mass the mass of one Avogadro's number, or mole, of whatever particles are specified.
 - 1 mole of C contains 6.02 x 10²³ carbon atoms and weighs 12.01 g
 - Carbon has molar mass of 12.01 g/mol
 - 1 mole of O contains 6.02 x 10²³ oxygen atoms and weighs 16.00 g
 - Molar mass of oxygen is 16.00 g/mol
 - 1 mole of He contains 6.02 x 10²³ helium atoms and weighs 4.003 g
 - Molar mass of helium is 4.003 g/mol
 - 1 mole of U contains 6.02 x 10²³ uranium atoms and weighs 208.0 g
 - Molar mass of uranium is 208.0 g/mol

- One mole of CO₂ contains how many molecules of CO₂?
 - $-6.02 \times 10^{23} \text{ CO}_2/\text{mol}$
- How many moles of carbon in one mole of CO₂?
 - Since one molecule of CO₂ contains 1 atom of C, one mole of CO₂ contains 1 mole of C.
- How many moles of oxygen in one mole of CO₂?
 - Since one molecule of CO₂ contains 2 atoms of O, one mole of CO₂ contains 2 moles of O.

How many atoms of carbon in one mole of CO₂?

$$1 mol\ CO_2 \times \frac{6.02 \times 10^{23}\ CO_2\ molecule}{1 mol\ CO_2} \times \frac{1\ C\ atom}{1\ CO_2\ molecule} = 6.02 \times 10^{23}\ C\ atoms$$

How many atoms of oxygen in one mole of CO₂?

$$1 mol\ CO_2 \times \frac{6.02 \times 10^{23}\ CO_2\ molecule}{1 mol\ CO_2} \times \frac{2\ O\ atom}{1\ CO_2\ molecule} = 1.20 \times 10^{24}\ O\ atoms$$

 If 3.3 Gt (3.3 x 10¹⁵ g) of carbon is added to the atmosphere every year, how much CO₂ is that?

$$3.3 \times 10^{15} g C \times \frac{1 mol C}{12.01 g C} \times \frac{1 mol CO_2}{1 mol C} \times \frac{44.01 g CO_2}{1 mol CO_2} = 1.2 \times 10^{16} g CO_2$$

- 1.2 x 10¹⁶ g CO₂ emitted/year
- 12 Gt/year

How is CO₂ produced by the combustion of fossil fuels?

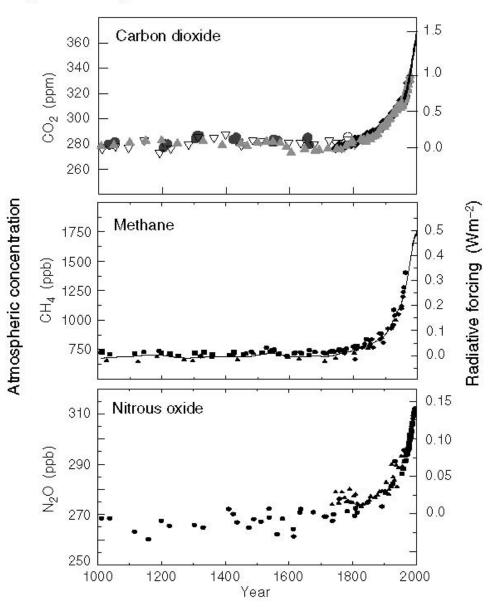
Coal (solid carbon)

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

Gasoline (primarily octane)

$$C_8H_{18}(l) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Natural gas (methane)


$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Other Greenhouse Gases

- H₂O
- CH₄
- N₂O
- O₃
- CFCs
- SF₆

Indicators of the human influence on the atmosphere during the Industrial Era

(a) Global atmospheric concentrations of three well mixed greenhouse gases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.4

Greenhouse Gases–Concentration Changes and Lifetimes

<u> </u>	CO ₂	CH ₄	N ₂ O
Preindustrial concentration	280 ppm	0.70 ppm	0.28 ppm
2000 concentration	370 ppm	1.8 ppm	0.31 ppm
Rate of concentration change	1.5 ppm/yr	0.010 ppm/yr	0.0008 ppm/yr
Atmospheric lifetime (yr)	5–200*	12	114

^{*}A single value for the atmospheric lifetime of CO₂ is not possible. Different removal mechanisms take place at different rates, leading to variation in atmospheric lifetime.

- Global Warming Potential (GWP)
 - A number that represents the relative contribution of a molecule of the indicated substance to global warming.
 - Ability to absorb IR radiation
 - Atmospheric lifetime

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.5

Global Warming Potential for Three Common Greenhouse Gases

Substance	Global Warming Potential (GWP)*	Tropospheric Abundance (%)	Tropospheric Abundance (ppm)
CO_2	1 (assigned value)	3.75×10^{-2}	375
CH ₄	23	1.8 × 10 ⁻⁴	1.8
N ₂ O	296	3.1×10^{-5}	0.31

^{*}GWP values are given for the estimated relative direct and indirect effects over a 100-yr period.