Chapter 5: The Water We Drink

Water

70% of the Earth's surface is covered by water The human body is 50-75% water The human brain is 75% water Blood is 83% water Lungs are 90% water Bones (!) are 22% water

And yet, we take water for granted What goes in to the water we drink? And where does it come from in the first place?

Where does water come from?

Aquifers – can be large or small

Water is the "Universal Solvent"

- **Solvent** a substance capable of dissolving other substances
- Solute the substance(s) that dissolves in a solvent
- **Solution** the resulting homogeneous mixture of uniform composition
- Aqueous Solution solutions in which water is the solvent

Which dissolve in water?

- Table salt
- Sugar
- Chalk
- Diet Pepsi
- Olive oil
- Tylenol

Table 5.1

Importance of Water as a Solvent

In our bodies:

- Blood plasma is an aqueous solution containing a variety of life-supporting substances.
- Inhaled oxygen dissolves in blood plasma in the lungs allowing O_2 to combine with hemoglobin.
- Blood plasma carries dissolved CO₂ to the lungs to be exhaled.
- · Blood plasma transports nutrients into all the cells and organs.
- Water helps to maintain a chemical balance by carrying wastes away.

In the environment:

- Water can transport toxic substances into, within, and out of living organisms.
- Water-soluble toxic substances, such as some pesticides, lead ions, and mercury ions, can be widely distributed.
- Water may reduce the concentrations of pollutants to safe levels by dilution or by carrying them away (or both).
- Rainwater carries substances, including those responsible for acid rain, from the atmosphere down to Earth.

Table 5.2	Mineral Composition of Tap Water, mg/L		
Calcium	66	Sulfates	42
Magnesium	24	Chlorides	48
Sodium	18	Nitrates	6
		Fluorides	1

Table 5.3	Mineral Composition of Evian, mg/L			
Calcium	78	Bicarbonates	357	
Magnesium	24	Sulfates	10	
Silica	14	Chlorides	4	
		Nitrates (N)	1	

Solute Concentration

- Concentration the ratio of the amount of 'ingredient' to the amount of water
- Recall that in the atmosphere...
 - -78% N₂ means that for every 100 air molecules, 78 of them (on average) are N₂.
 - 370 ppm CO_2 (up from 280 ppm) means that for every 1,000,000 air molecules, 370 of them (on average) are CO_2
 - In the atmosphere, the solvent is N_2 , it is what there is the most of.

Percent, %

• Weight Percent – $\frac{grams \ of \ solute}{grams \ of \ water} \times 100\%$

 Example, 5 g of NaCl dissolved in 100 g of water makes an aqueous solution that is 5 % NaCl by weight.

$$\frac{5 g NaCl}{100 g H_2 O} \times 100\% = 5\%$$

ppm

- Again, by weight, so $1 ppm = \frac{1 g \text{ solute}}{1,000,000 g H_2 O}$
- When dealing with so much water, it's a little easier to deal with Volume instead of Mass

The density of water is 1g/mL. 1,000,000 g $H_2O = 1,000,000$ mL H_2O 1,000 mL = 1 L 1,000,000 mL $H_2O = 1,000$ L H_2O

 $1 ppm = \frac{1 g \ solute}{1,000,000 \ g \ H_2 O} = \frac{1 g \ solute}{1,000 \ L \ H_2 O} = \frac{1,000 \ mg \ solute}{1,000 \ L \ H_2 O} = \frac{1 mg \ solute}{1 \ L \ H_2 O}$

1 ppm = 1mg solute / L of water

Table 5.2	Mineral Composition of Tap Water, mg/L		
Calcium	66	Sulfates	42
Magnesium	24	Chlorides	48
Sodium	18	Nitrates	6
		Fluorides	1

Table 5.3	Mineral Composition of Evian, mg/L			
Calcium	78	Bicarbonates	357	
Magnesium	24	Sulfates	10	
Silica	14	Chlorides	4	
		Nitrates (N)	1	

18 mg sodium	$1LH_2O$	1.8×10^{-1}	⁻² mg sodiun	n
$1LH_2O$	$1,000 mLH_2O$	1 <i>n</i>	nLH_2O	_
$1.8 \times 10^{-2} mg$ so	$\frac{dium}{2} \frac{1mLH_2O}{2}$	_ <u>1.8×1</u>	$0^{-2}mg$ sodi	um
$1mLH_2O$	$1gH_2O$		$1gH_2O$	
$1.8 \times 10^{-2} mg$ so	dium 1 g sodi	um	$-1.8 \times 10^{-5} g$	g sodium
$1gH_2O$	^ 1,000 mg s	odium	– 1 <i>g H</i>	S_2O
$1.8 \times 10^{-5} g \ sodi$	$\underline{um} \times \frac{1,000,000}{-}$	18 <i>g</i>	sodium	
$1gH_2O$	1,000,000	1,000,0	$000 g H_2 O$	
$\frac{18 mg \ sodium}{1} =$	18g sodium	- = 18 n	nm	
$1LH_2O$	$1,000,000 g H_2 C$)	<i>F</i> '''	

ppb

- Again, by weight, so $1 ppb = \frac{1 g \ solute}{1,000,000,000 \ g \ H_2 O}$
- As with ppm, it's easier to deal with volume than mass The density of water is 1g/mL. 1,000,000,000 g H₂O = 1,000,000 mL H₂O 1,000 mL = 1 L 1,000,000,000 mL H₂O = 1,000,000 L H₂O 1 g = 1000 mg = 1,000,000 μ g

 $1 ppb = \frac{1 g solute}{1,000,000,000 g H_2 O} = \frac{1,000,000 \mu g solute}{1,000,000 L H_2 O} = \frac{1 \mu g solute}{1 L H_2 O}$

 $1 \text{ ppb} = 1 \mu g/L$

- The maximum **lead** concentration in drinking water allowed by the federal government is 15 ppb.
- This means that for every 1,000,000,000 g of water (1,000,000 L) only 15 g of Pb is allowed.
- This corresponds to 15 μg Pb/L

Molarity

 $M = \frac{moles \, of \, solute}{liters \, of \, solution}$

 Counting chemical units, so it is easier to compare one compound to another

 If we dissolve 17 g NaNO₃ in enough water to create 1L of solution, what is the molarity of this solution?

molar mass of NaNO₃ $\frac{23 g Na}{mol} + \frac{14 g N}{mol} + 3 \left(\frac{16 g O}{mol}\right) = \frac{85 g NaNO_3}{mol}$ $\frac{17 \text{ g NaNO}_{3}}{1 \text{ L solution}} \times \frac{1 \text{ mol NaNO}_{3}}{85 \text{ g NaNO}_{3}} = \frac{0.2 \text{ mol NaNO}_{3}}{1 \text{ L solution}}$ $\frac{0.2 \,mol \,NaNO_3}{1 \,L \,solution} = 0.2 \,M \,NaNO_3 \,solution$

 For this same 0.20 M NaNO₃ solution, what is the concentration of sodium?

 $\frac{0.2 \,mol \,NaNO_3}{1 \,L \,water} \times \frac{1 \,mol \,Na^+}{1 \,mol \,NaNO_3} = 0.2 \,M \,Na^+$ $\frac{0.2 \,mol \,Na^{+}}{1 \,L \,water} \times \frac{23 \,g \,Na^{+}}{1 \,mol \,Na^{+}} = \frac{4.6 \,g \,Na^{+}}{1 \,L \,water}$ $\frac{4.6 g Na^{+}}{1L water} \times \frac{1000 mg}{1 g} = \frac{4,600 mg Na^{+}}{1L water}$ $\frac{4,600 \, mg \, Na^+}{1 \, L \, water} = 4,600 \, ppm$

 The concentration of the solution we made by dissolving 17 g of NaNO3 in enough water to make 1 L of solution is:

> 0.20 M NaNO₃ 0.20 M Na⁺ 0.20 M NO₃⁻ 1.7 wt % NaNO₃ 4,600 ppm Na⁺ 12,400 ppm NO₃⁻

Interesting properties of water

- It is a liquid under standard conditions
- H₂O boils at 100°C and freezes at 0°C
 - Other similar molecules such as NH_3 , HF, and H_2S are all gases at room temperature. H_2O has a molar mass of 18g/mol
 - Molecules with similar masses such as N_2 (28g/mol), O_2 (32g/mol), and CO_2 (44g/mol) are all gases at room temperature
- What makes water different?

When water freezes, it expands.

The density of solid water is less than the density of liquid water.

Ice floats

Why?

Electronegativity – a measure of an atom's attraction for the electrons it shares in a covalent bond.

Table	e 5.4	Electrony E	Electronegativity Values, Arranged by Group Number				
<u>1A</u>	2A	3A	4 A	5A	6A	7A	<u>8A</u>
Н							He
2.1							
Li	Be	В	С	Ν	0	F	Ne
1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	Р	S	Cl	Ar
0.9	1.2	1.5	1.8	2.1	2.5	3.0	

Table 5.5Comp		Comparison	parison of a Sodium Atom with a Sodium Ion		
	Sodium	Atom		Sodium Ion	
Na [.]	N 11 proto 11 elect <i>Net</i> cha	Ja ons rons rge: zero	Na	Na ⁺ 11 protons 10 electrons <i>Net</i> charge: 1+	

Table 5.6	Comparison of with a Chloride	a Chlorine Atom e Ion	
Chlorine Atom		Chloride Ion	
C 17 proto 17 electr <i>Net</i> char	1 ons rons rge: zero	Cl ⁻ Cl ⁻ 17 protons 18 electrons <i>Net</i> charge: 1–	

- Metals and Non-metals create IONIC BONDS
 - Ionic bonds are **not** characterized by sharing of electrons, but by the attraction of oppositely charged ions
 - The further away from each other on the periodic table the two elements are, the more likely the bond is ionic

Na⁺ Cl^{-} Cl^{-} Na⁺ Cl^{-} Na⁺ Na⁺ Cl^{-} Cl^{-} Na⁺ Na⁺ Cl^{-} Na⁺ Cl^{-} Cl^{-}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permissi

Water is "Polar"

The bonds in water SHARE the electrons, but the electrons are not shared equally. The O-H bond is a **polar covalent bond**

Non-Polar Molecules

Note! CO_2 is a special case. Each **bond** is polar – $\Delta EN = 1.0$. But because the molecule is symmetric, the end result is **non**polar.