In the U.S., fossil fuel combustion provides

- 70% of electricity
- 85% of total energy

Fossil fuels produce large amounts of CO₂

The supply of fossil fuels is finite, and may be running out (estimates vary)

- 150 years left for coal
- 50 years left for oil

Energy Transformations

First Law of Thermodynamics:

Energy is neither created nor destroyed

- -Conservation of Energy
- -Conservation of Mass

Energy **can** be converted from one form into another

Energy Transformation

Second Law of Thermodynamics

The entropy of the universe always increases during a spontaneous process

It is impossible to completely convert heat into work without making some other changes in the universe

Organized energy is always being transformed into chaotic motion or heat energy

Randomness is decreased only through a **non**spontaneous process (work must be performed)

Table 4	.2	Bond Energies (in kJ/mol)							
	Н	С	Ν	0	S	F	Cl	Br	Ι
Single bo	onds								
Н	436								
С	416	356							
Ν	391	285	160						
0	467	336	201	146					
S	347	272		_	226				
F	566	485	272	190	326	158			
Cl	431	327	193	205	255	255	242		
Br	366	285	—	234	213		217	193	
Ι	299	213	—	201	_	—	209	180	151
Multiple	bonds								
C=C	598			C=N	616		C=0	803 in	CO ₂
C≡C	813			$C \equiv N$	866		C≡O	1073	_
N=N	418			0=0	498				
N≡N	946								

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition by James E. Huheey, 1983, Addison Wesley Longman.

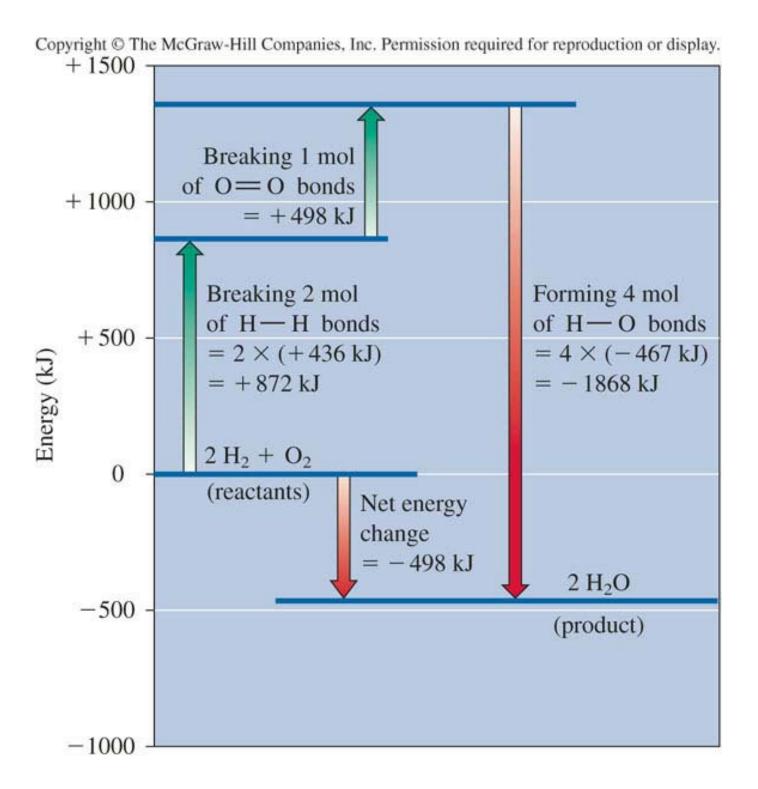
Formation of Water

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) + energy$

Reactants

Hydrogen (2 molecules, each with 1 H-H bond)

Oxygen (one O=O double bond)


Products

Water (2 molecules, each with 2 H-O bonds)

	Bonds per		Total Number of	Bond	Energy per	
Molecule	molecule	Moles	Bonds	Process	bond	Total Energy
H—H	1	2	$1 \times 2 = 2$	breaking	+436 kJ	$2 \times (+436) = +872 \text{ kJ}$
0=0	1	1	$1 \times 1 = 1$	breaking	+498 kJ	$1 \times (+498) = +498 \text{ kJ}$
Н—О—Н	2	2	$2 \times 2 = 4$	making	-467 kJ	$4 \times (-467) = -1868 \text{ kJ}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy is **released** because there is energy left over 872 kJ + 498 kJ - 1868 kJ = -498 kJ (exothermic)

Formation of Water

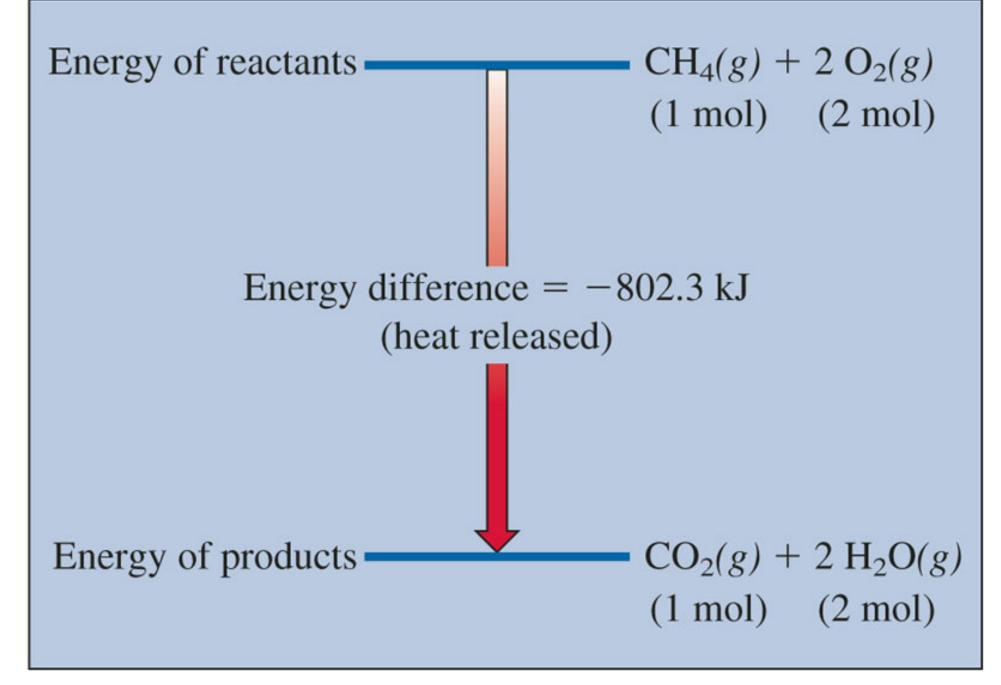
- The overall energy change in breaking bonds and forming new ones is – 498 kJ
- The release of heat corresponds to a decrease in the energy of a chemical system
- This explains why the energy change is negative

Combustion of Methane

Converight @ The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Molecule	Bonds per molecule	Moles	Total Number of Bonds	Bond Process	Energy per bond	Total Energy
CH_4	4	1	$4 \times 1 = 4$	breaking	+416 kJ	$4 \times (+416) = +1664 \text{ kJ}$
O ₂	1	2	$1 \times 2 = 2$	breaking	+498 kJ	$2 \times (+498) = +996 \text{ kJ}$
CO ₂	2	1	$2 \times 1 = 2$	making	-803 kJ	$2 \times (-803) = -1606 \text{ kJ}$
H ₂ O	2	2	$2 \times 2 = 4$	making	-467 kJ	$4 \times (-467) = -1868 \text{ kJ}$

- Total energy change in breaking bonds
 1664 kJ + 996 kJ = + 2660 kJ
- Total energy change in forming bonds
 - 1606 kJ + (-1868 kJ) = 3474 kJ
- Net energy change
 2660 kJ + (-3474 kJ) = 814 kJ


From Fuel Sources to Chemical Bonds

This theoretical value (- 814 kJ) compares very favorably with the experimental value (- 802.3 kJ). But it's not the same. Why not?

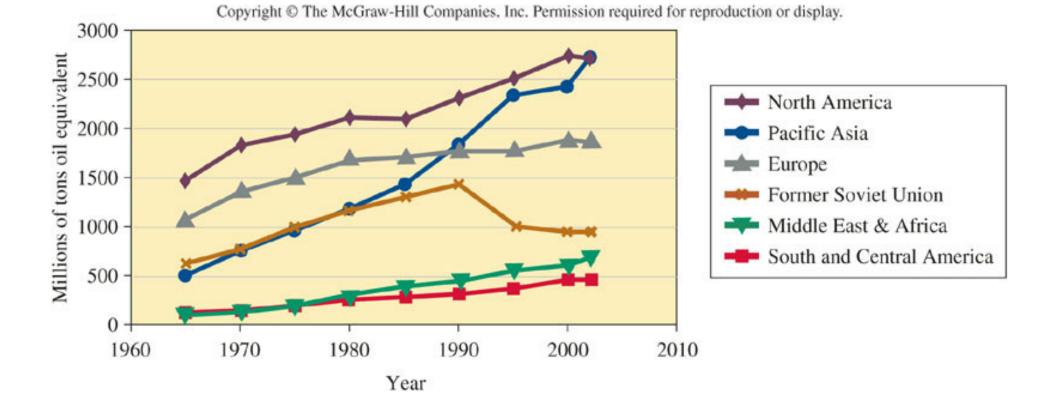
- In real chemical reactions, not all the bonds are broken – just the pertinent ones
- In real molecules, not all bonds the same type are energetically equal
 - The O-H bond in water is not the same strength as the O-H bonds in hydrogen peroxide, H₂O₂
- But we can calculate the energy of any reaction as if these assumptions were true, and get pretty close to the real answer

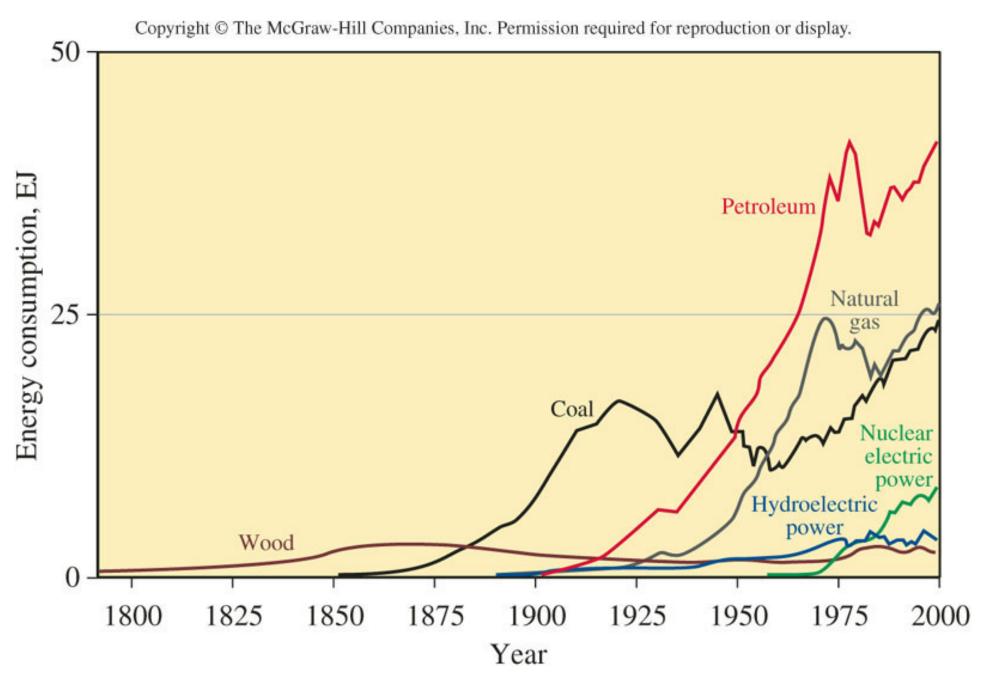
From Fuel Sources to Chemical Bonds

- Combustion of Propane, C₃H₈
 -2024 kJ/mol
- Combustion of Ethanol, C₂H₅OH
 - -1281 kJ/mol

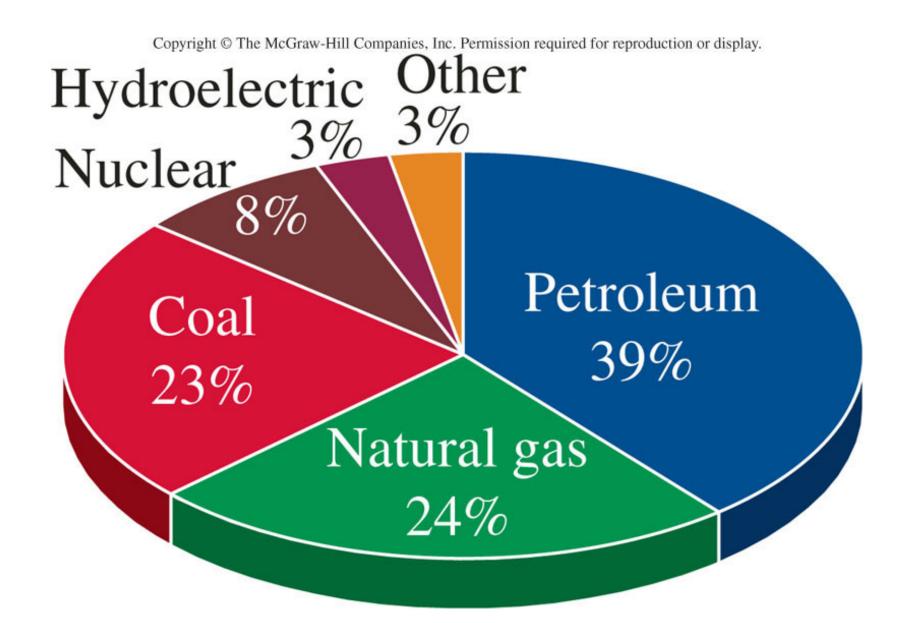
Energy as a Barrier to Reaction

 Activation energy – the energy necessary to initiate a reaction




Energy as a Barrier to Reaction

- Low activation energies fast reaction rates
- High activation energies slow reaction rates
- Useful fuels react at rates that are neither too fast nor too slow
- Smaller 'bits' react faster than large 'bits'
- Increased temperatures help reactants to get over activation energy barrier


Energy Consumption

- Pre-Historic man had only body and food for fuel
 - Used ~2000 kcal/day of energy
- Currently, Americans have access to a lot more technology
 - Use 650,000 kcal/day of energy
 - 65 barrels of oil or 16 tons of coal per person per year

History of US energy consumption by source, $1 \text{ EJ} = 10^{18} \text{ J}$

Annual US energy consumption by source, 2002. 'Other' includes wood, waste, alcohol, geothermal, wind and solar

Properties needed in a fuel

- Contain substantial energy content
- Plentiful
- Burn readily at just the right rate
- Others...

Energy Content

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.3	Energy Content of	Fuels	
	Source	kJ/g	
	Wood (oak)	14	
	Gasoline	48	
	Coal (hard)	31	
	Methane	56	
	Propane	51	
	Hydrogen	140	
	Ethanol	30	

Fossil Fuels

- "You will die but the carbon will not; its career does not end with you...it will return to the soil, and there a plant may take it up again in time, sending it once more on a cycle of plant and animal life"
 - Jacob Bronowski in Biography of an Atom And the Universe.
- Organic matter (plants, animals) decays upon death, producing CO₂ and H₂O, just like in combustion
- But in some cases, decaying matter doesn't have enough O_2 around to complete the reaction
- Other reactions take place deep in the earth at high temperatures and pressures, producing coal, petroleum and natural gas.

Fossil Fuels: Coal

- Was known in ancient times used in funeral pyres as early as 3000 B.C.
- Mining for coal was not common until ~1300 A.D., in Britain
- During the Industrial Revolution (beginning in the 1700s), coal became the chief fuel source in Britain, and later the rest of the world
 - -Fuel was needed in vast quantities to power the new Steam Engines
 - –Wood was already in short supply

Fossil Fuels: Coal

- Coal is a better energy source than wood
 Coal yields 30 kJ per gram
 Wood yields 12 kJ per gram
- Coal has higher ratio of carbon (85% by mass)
 - -Fuels with a higher carbon ratio produce more energy when they are burned
 - An **approximate** molecular formula for coal is $C_{135}H_{96}O_9NS$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.4	Fuel Value of Various U.S. Coals				
Type of Coal	State of Origin	Heat Content (kJ/g)			
Anthracite	Pennsylvania	30.5			
Bituminous	Maryland	30.7			
Subbituminous	Washington	24.0			
Lignite (brown coal)	North Dakota	16.2			
Peat	Mississippi	13.0			
Wood	various	10.4–14.1			

- As carbon content increases, so does the heat content
- The less oxygen a compound contains, the more energy per gram it will release on combustion
- "Better" coals have been exposed to higher pressures for longer times, losing more oxygen and becoming harder

Fossil Fuels: Coal

- Drawback #1: Difficult to obtain
 - Underground mining dangerous and expensive
 - Since 1900 more than 100,000 workers killed in American mine disasters – but how many worldwide? And how many have been made sick, or died from "black lung"?
- Drawback #2: Coal is a dirty fuel
 - Soot
 - Sulfur and nitrogen oxides
 - Mercury
 - Carbon dioxide

Fossil Fuels: Coal

- The benefit of coal: the global supply is large
 - -20-40 times greater than petroleum
- Because of this, coal is expected to become a much more important fuel in the next 100-150 years
- It will become important to find ways to better use coal – more cleanly, more safely