
Chem L111

- How will L111 work?
- Every Tuesday, there will be a homework assignment due – you can't do chemistry without problem solving
- Most Thursdays, there will be a short quiz 15 minutes, multiple choice

Fig.01.04

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Consider This - Solution

- Amount of air in one breath
 - \sim 500 mL/breath
- Breaths per minute
 - \sim 15 breaths/min
- Breaths per day

 $\frac{15 \text{ breaths}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{24 \text{ hr}}{1 \text{ day}} = \frac{21,600 \text{ breaths}}{1 \text{ day}}$

Amount we breathe per day

 $\frac{500 \text{ mL}}{1 \text{ breath}} \times \frac{21,600 \text{ breaths}}{1 \text{ day}} = \frac{10,800,000 \text{ mL}}{1 \text{ day}}$

$$\frac{10,800,000 \text{ mL}}{1 \text{ day}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{10,800 \text{ L}}{1 \text{ day}} \approx 10,000 \frac{L}{day} = 10^4 \frac{L}{day}$$

Boston Air Quality

Brown Cloud Polluted Day January 21, 1999

This is a typical "brown cloud" polluted day in Boston. Note how the brown cloud appears to envelop the city but quickly thins out at higher elevations. These events tend to occur on calm winter mornings during rush hour traffic. PM_{2.5} and black carbon levels may be high; ozone will be low; RH may vary.

```
PM_{2.5} = 40 + ug/m^3
RH = 69%
```

Risk Assessment

- Depends on two factors
 - Toxicity the intrinsic health hazard of a substance
 - Exposure the amount of the substance encountered

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 1.5 National Ambient Air Quality Standards, 1999

Pollutant	Standard (ppm)	Approximate Equivalent Concentration of Standard (µg/m ³)
Carbon monoxide		
8-hr average	9	1×10^4
1-hr average	35	4×10^4
Nitrogen dioxide		
Annual average	0.053	100
Ozone		
1-hr average	0.12	235
8-hr average	0.08	157
Lead		
Quarterly average		1.5
Particulates*		
PM ₁₀ , 24-hr average		150
PM ₁₀ , annual average		50
PM _{2.5} , 24-hr average		65
PM _{2.5} , annual average		15
Sulfur dioxide		
Annual average	0.03	80
24-hr average	0.14	365
3-hr average	0.50	1300

"Scientific notation" is used to represent numbers which are significantly larger or smaller than one, in order to eliminate the need to write a lot of zeroes.

In this table, the concentrations of CO are written in scientific notation:

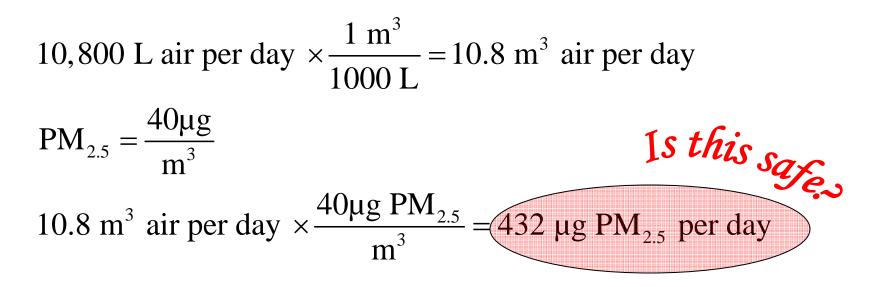
 $1 \times 10^4 = 10000$

$$4 \times 10^4 = 40000$$

... Data not available

* PM_{10} refers to airborne particles 10 μ m in diameter or less, and $PM_{2.5}$ to those less than 2.5 μ m. These two categories are monitored separately, and the standards for $PM_{2.5}$ are still controversial.

SI Base Units


Name	Symbol	Unit of
meter	m	length
kilogram	kg	mass
second	S	time
kelvin	К	thermodynamic temperature
mole	mol	amount of substance

SI = Système Internationale

The Prefixes of the SI

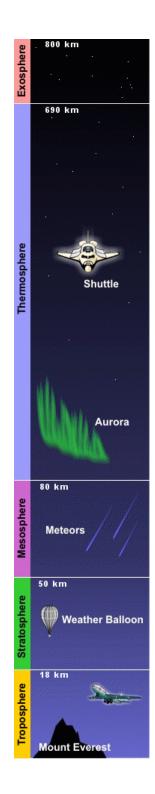
exa	[E]	1 000 000 000 000 000 000	= 10 ¹⁸	(one quintillion)
peta	[P]	1 000 000 000 000 000	= 10 ¹⁵	(one quadrillion)
tera	[T]	1 000 000 000 000	= 10 ¹²	(one trillion)
giga	[G]	1 000 000 000	= 10 ⁹	(one billion)
mega	[M]	1 000 000	= 10 ⁶	(one million)
kilo	[k]	1 000	= 10 ³	(one thousand)
		1	= 10 ⁰	(one)
milli	[m]	0.001	= 10 ⁻³	(one thousandth)
micro	[µ]	0.000 001	= 10 ⁻⁶	(one millionth)
nano	[n]	0.000 000 001	= 10 ⁻⁹	(one billionth)
pico	[p]	0.000 000 000 001	= 10 ⁻¹²	(one trillionth)
femto	[f]	0.000 000 000 000 001	= 10 ⁻¹⁵	(one quadrillionth)
atto	[a]	0.000 000 000 000 000 001	= 10 ⁻¹⁸	(one quintillionth)

Calculation

Calculation

10,800 L air per day $\times \frac{1 \text{ m}^3}{1000 \text{ L}} = 10.8 \text{ m}^3$ air per day $PM_{2.5} = \frac{40\mu g}{m^3}$ 10.8 m³ air per day $\times \frac{40\mu g PM_{2.5}}{m^3} = 432 \ \mu g PM_{2.5}$ per day During Rush Hour - duration of 2.5 hours so how much breathed in?

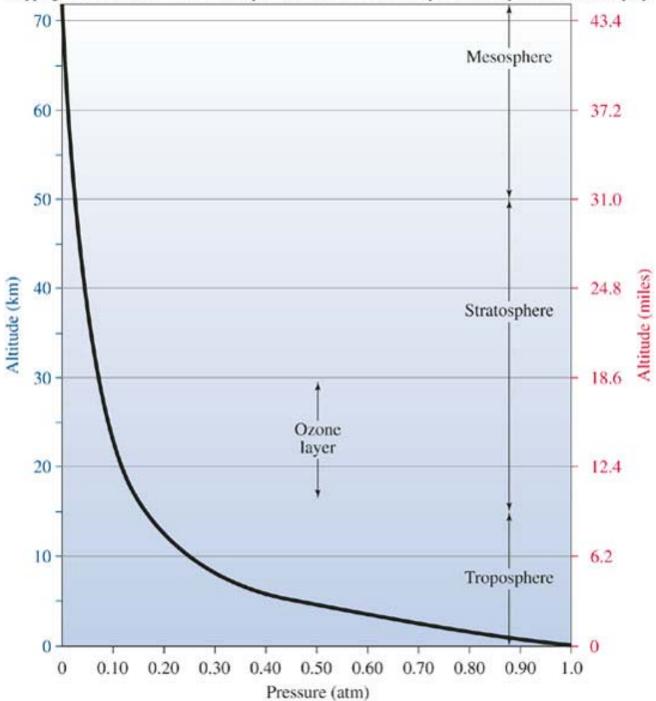
Calculation


10,800 L air per day $\times \frac{1 \text{ m}^3}{1000 \text{ L}} = 10.8 \text{ m}^3$ air per day $PM_{2.5} = \frac{40\mu g}{m^3}$ 10.8 m³ air per day $\times \frac{40 \mu g PM_{2.5}}{m^3} = 432 \mu g PM_{2.5}$ per day During Rush Hour - duration of 2.5 hours so how much breathed in? $2.5 \text{ hours} \times \frac{1 \text{ day}}{24 \text{ hours}} \times \frac{432 \,\mu\text{g PM}_{2.5}}{1 \text{ day}}$ = 45 µg PM_{2.5} breathed during 'rush hour' Is this safe?

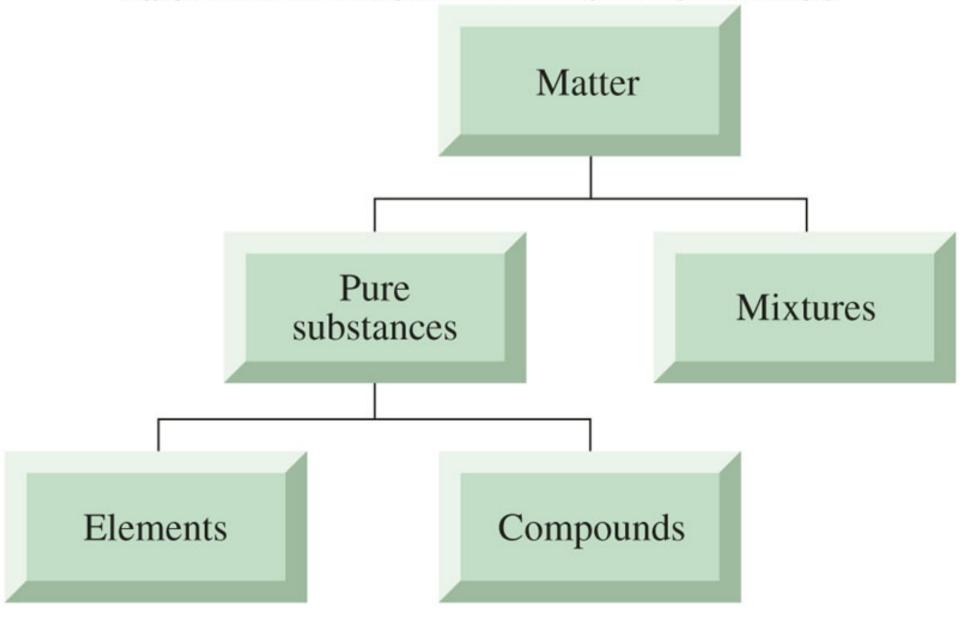
Consider This - 1.12

A publication of the ACS, *Chemical Risk: A Primer*, states:

"The general public is uncomfortable with uncertainties. Too often we think in terms of absolutes and demand that the scientists and decision makers be held accountable for their risk decisions."


Do you agree or disagree with these statements?

- **Exosphere**: above the ionosphere, where the atmosphere thins out into space.
- **Thermosphere**: from 80–85 km to 640+ km, temperature increasing with height.
 - lonosphere: the region containing ions: approximately the mesosphere and thermosphere up to 550 km.
- Mesopause: Boundary
- **Mesosphere**: from about 50 km to the range of 80 km to 85 km, temperature decreasing with height.
- Stratopause: Boundary
- **Stratosphere**: from that 7–17 km range to about 50 km, temperature increasing with height.
 - Ozone Layer: approximately 10 50 km, where stratospheric ozone is found. Note that even within this region, ozone is a minor constituent by volume
- Tropopause: Boundary
- **Troposphere**: The troposphere is the lowest layer of the atmosphere starting at the surface going up to between 7 km at the poles and 17 km at the equator with some variation due to weather factors. In the troposphere, on average, temperature decreases with height due to expansive cooling.


http://en.wikipedia.org/wiki/Earth's_atmosphere

Layers of Atmosphere leading to space. (NOAA) from U.S. National Weather Service (NOAA)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Matter commonly referred to as the substance of which physical objects are composed
 - Mixtures (the atmosphere)
 - Pure Substances
- Elements substances that cannot be broken down into simpler ones by any chemical means
- Chemical symbols one- or two-letter abbreviations for the elements
- Periodic Table an orderly arrangement of all the elements base on similarities of their properties

1 1A			(Copyright	© The M	lcGraw-H	ill Compa	anies, Inc.	Permissi	on require	ed for rep	roduction	or display	v.			18 8A
1 H 1.008	2 2A				24 - Cr 52.00 -		Atomic n Atomic n					13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 1 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	ш	112	113	114	115	(116)	(117)	(118)
	Metallo	ids		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0

The 1–18 group designation has been recommended by the International Union of Pure and Applied Chemistry (IUPAC) but is not yet in wide use. In this text we use the standard U.S. notation for group numbers (1A–8A and 1B–8B). No names have been assigned for elements 111–115. Elements 116–118 have not yet been synthesized.

95

Am

(243)

96

Cm

(247)

97

Bk

(247)

98

Cf

(251)

99

Es

(252)

100

Fm

(257)

101

Md

(258)

102

No

(259)

103

Lr

(262)

94

Pu

(244)

91

Pa

231.0

90

Th

232.0

Nonmetals

92

U

238.0

93

Np

(237)

- Horizontal Columns Periods
- Vertical Columns Groups
 - Alkali Metals
 - Alkaline Earth Metals
 - Halogens
 - Noble gases inert
- Metals elements that are shiny and conduct electricity and heat well
- Nonmetals elements that have varied appearances and don't conduct well

Pure Substances

- Elements pure substances made up of a single element
 - Only ~100 exist
- Compounds pure substances made up of two or more elements in a fixed, characteristic chemical combination
 - Over 20 million compounds have been isolated, identified and characterized.

Your Turn 1.15

- Classifying Pure Substances
 - Using your everyday knowledge of materials, classify each of these as an element, a compound, or as a mixture.
 - a. Rubbing Alcohol (Isopropanol)
 - b. Copper
 - c. U.S. penny coin
 - d. 14kt gold
 - e. Nitrogen dioxide
 - f. Shampoo

Atoms and Molecules

- An atom (Greek from non and divisible) is a submicroscopic structure found in all ordinary matter around us.
 - The word *atom* originally meant a smallest possible particle of matter, not further divisible.
 - Later, those objects to which the name atom had been assigned were found to be further divisible into smaller subatomic particles, but the word atom nonetheless continues to refer to them.
 - Atoms are canonically distinguished from ions by their balanced electrical charge. When this charge is disrupted, the particle is then considered to be an atomic ion rather than an atom.
- Most atoms are composed of 3 types of massive subatomic particles which govern their external properties:
 - electrons, which have a negative charge;
 - protons, which have a positive charge; and
 - neutrons, which have no charge.

- Pure elements have all the same kind of atom.
 - Pure elements can also be made up of molecules.
 - Ar (g), Fe (s), Hg (l), N₂ (g)
 - N₂ (g), O₂ (g), and H₂ (g) are examples of elements made up of diatomic molecules.
- Pure compounds have different kinds of atoms, but all the same kind of molecules.
 - Molecule a combination of a fixed number of atoms held together in a certain spatial arrangement.
 - Chemical formula a symbolic way to represent the elementary composition of a substance
 - H₂O, CH₄, NO₂, CO₂, CO

Your Turn 1.16

- Elements and Compounds
 - Name the element(s) present in each of these substances. Identify each substance as an element or a compound.
 - a. Water, H_2O
 - b. Methane, CH₄
 - c. Iodine, I_2
 - d. Nitrogen dioxide, NO₂
 - e. Glucose, C₆H₁₂O₆
 - f. Methyl bromide, CH₃Br

Most Prominent Gases in the Air

Name	Chemical Formula	Element or Compound	Atom or Molecule
Nitrogen	N ₂		
Oxygen	O ₂		
Argon	Ar		
Water	H ₂ O		
Carbon Dioxide	CO ₂		
Methane	CH_4		
Krypton	Kr		

Naming Binary Compounds

- The name of the more metallic element comes first, followed by the name of the less metallic element, modified to end in the suffix "ide".
- Example: sodium and chlorine combine to give the common compound

– sodium chloride or NaCl or table salt.

Your Turn 1.17

- Naming Simple Compounds
 - Name the compound that contains each pair of elements.
 - a. Chlorine and Calcium
 - b. Oxygen and Magnesium
 - c. Potassium and lodine
 - d. Hydrogen and Sulfur

Your Turn 1.18

- More Naming Exercises
 - Name the compound that has each of these formulas.
 - a. AgCl
 - b. Fe_2O_3
 - c. NaH
 - d. CuCl₃

Naming Compounds

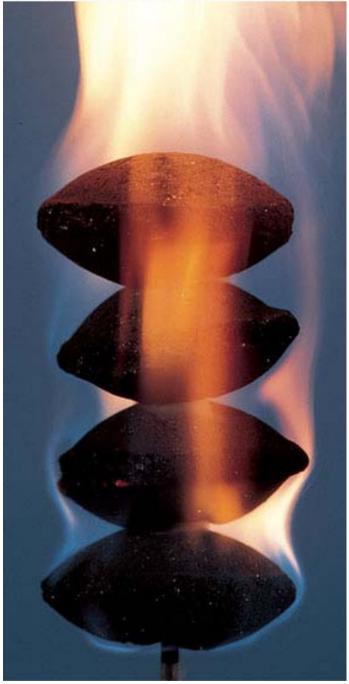
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 1.7	Prefixes Used in Naming Compounds						
Prefix	Meaning	Prefix	Meaning				
Mono	One	Hexa-	Six				
Di- or Bi-	Two	Hepta-	Seven				
Tri-	Three	Octa-	Eight				
Tetra-	Four	Nona-	Nine				
Penta-	Five	Deca-	Ten				

- CO: carbon monoxide
- CO₂: carbon dioxide
- NO₂: nitrogen dioxide
- N₂O₄: dinitrogen tetraoxide
- NO:
- SO₂:

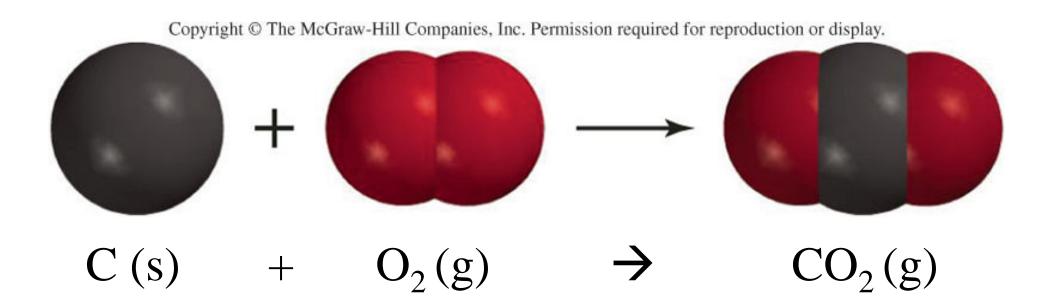
Chemical Reactions

 A process whereby substances described as reactants are transformed into different substances called *products*.

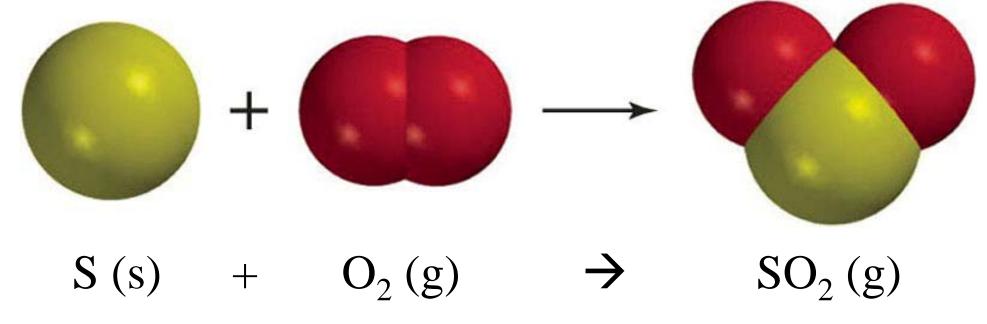

 $Reactant(s) \rightarrow Product(s)$

carbon + oxygen \rightarrow carbon dioxide

 Represented by a chemical equation which uses the chemical formulas of the reactants and products.


 $C + O_2 \rightarrow CO_2$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Combustion

- The rapid combination of oxygen with a substance.
- A major type of chemical reaction.
- When elemental carbon or carbon-containing compounds burn in air, oxygen combines with the carbon to form CO₂ or CO (or both).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The **law of conservation of mass and matter** states that the mass of a system of substances is constant, regardless of the processes acting inside the system.

- An equivalent statement is that matter changes form, but cannot be created or destroyed.
- This implies that for any chemical process in a closed system, the mass of the reactants must equal the mass of the products.

Tbl.01.08

Table 1.8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Characteristics of Chemical Equations

Always Conserved

Identity of atoms in reactants = Identity of atoms in products Number of atoms in reactants = Number of atoms in products Mass of all reactants = Mass of all products

May Change

Number of molecules in reactants may differ from number of molecules in products Physical states (s, l, or g) of reactants may differ from physical states of products

- Carbon and oxygen combine to give carbon monoxide
- Carbon = C(s)
- Oxygen = $O_2(g)$
- Carbon Monoxide = CO (g)
- $C(s) + O_2(g) \rightarrow CO(g)$
- Is this reaction Mass Balanced?

$C(s) + O_2(g) \rightarrow CO(g)$

Reactants : 1 atom of carbon and 2 atoms of oxygen Products : 1 atom of carbon and 1 atom of oxygen

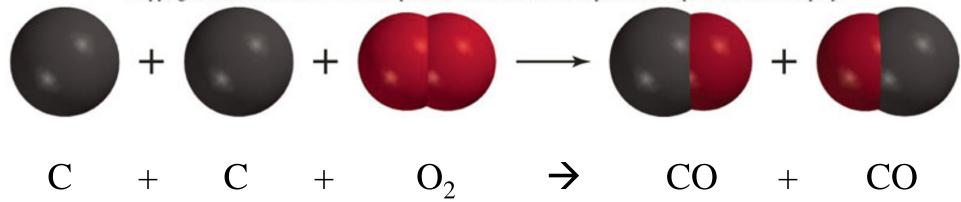
Where does the other oxygen atom go?

$C(s) + O_2(g) \rightarrow 2 CO(g)$

Reactants still : 1 atom of carbon and 2 atoms of oxygen
Now products : 2 atoms of carbon and 2 atoms of oxygen

Now the Oxygens match, but what about the Carbon?

$\mathbf{2} \mathrm{C}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$


Now reactants : 2 atoms of carbon and 2 atoms of oxygen

Products : 2 atoms of carbon and 2 atoms of oxygen

Now the both the Oxygens and the Carbon match.

Fig.01.p035a

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

