
Terms of Free Ions with dn Configurations

! The usual notation for electronic configurations (e.g., 3d2) does not tell
us which specific orbitals are occupied, except when a degenerate set of
orbitals is half filled or fully filled.  

! Except for a fully filled subshell, we rarely presume to know which of
the two possible spin states individual electrons have (ms = ±½).

Example:  There are ten ways of arranging the single electron in the
configuration nd 1 (n = 3, 4, 5, ...)

ml = -2 ml = -1 ml = 0 ml = +1 ml = +2
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! The number of possible arrangements increases greatly with additional
electrons.



Electron Arrangements for nd 2 (Same Spins)

! Consider the 20 possible ways of arranging electrons for the
configuration nd2 (n = 3, 4, 5, ...), in which the two electrons have the
same spins (both ms = +½ or ms = –½) :

ml = -2 ml = -1 ml = 0 ml = +1 ml = +2
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Electron Arrangements for nd 2 (Opposite Spins)
! There are 25 additional configurations with opposite spins.

ml = -2 ml = -1 ml = 0 ml = +1 ml = +2
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Dt '
(2×5)!

[(2×5) & 2)]!2!
'

10!
8! × 2!

'
3628800

(40320)(2)
' 45

Microstates

! Each set of individual ml and ms values constitutes a microstate of the
configuration.  

! Some microstates may be allowable arrangements in the ground state,
and others may be allowable arrangements in some higher-energy
excited state.  

! With additional electrons the number of microstates rises dramatically.

! For any allowed number of electrons in a set of degenerate orbitals
(called equivalent electrons), the number of possible microstates is
given by

Dt '
(2No)!

(2No & Ne)!Ne!

Dt = number of possible microstates = total degeneracy of the
configuration

No = number of degenerate orbitals in the set or subshell

Ne = number of electrons in the configuration

Example: nd2



Microstates for nd 1–10

configuration d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

microstates 10 45 120 210 252 210 120 45 10 1

L The number of microstates (the total degeneracy) for a
configuration nd x is the same as for nd 10–x.



Microstates and Terms

! In any microstate both the individual orbital magnetic moments (related
to ml)  and spin magnetic moments (related to ms) will interact with one
another, resulting in an energy state or term for the configuration.  

! Except for a fully filled configuration, no one microstate uniquely gives
rise to a particular energy for the configuration.  

! A number of microstates generally contribute to a single term.  

! Terms are usually degenerate according to the number of microstates
giving rise to them.

! In a ligand field, degeneracies among all the microstates comprising a
particular free-ion term may be partially lifted.



Russell-Saunders Coupling Scheme

! The ways in which individual ml and ms values interact are not easily
evaluated for a real atom or ion.  

! In fact, the notion that we can assign individual ml and ms values to the
electrons and assess their interactions on that basis is really an extreme
extension of the one-electron wave mechanical model.

! The Russell Saunders coupling scheme is a reasonably good first
approximation for assessing the origins of the term energies in many
cases in terms of summations of individual electron ml and ms values.

! The Russell-Saunders coupling scheme can be applied successfully to
interpreting the term energies of first and second row transition metals 

" Less successful with the third row transition elements

" Hopelessly inadequate with f-block transition elements (i.e.,
lanthanides and actinides).  



Free-Ion Term Symbols

! The various terms that can exist for a particular configuration are
indicated by a term symbol of the form

2S + 1L

" L is related to the overall orbital angular momentum for the system of
electrons.  

• Values of L may be 0, 1, 2, ...

" S is related to the overall spin angular momentum for the system of
electrons.

• Values of S may be 0, 1/2, 1, 3/2, ...  

" L and S are analogous to the quantum numbers l and s for single
electrons.  

! The left superscript number 2S + 1 is the multiplicity of the term.  



The J Quantum Number

! A third quantum number, J, is often added to term symbols as a right
subscript.

2S+1LJ

" J relates to the total angular momentum arising from spin-orbital
coupling.  

" Allowed J values are L + S, L + S - 1,  L + S - 2, ..., *L - S*.  

" For a given L value, the various values of J represent closely spaced
energy sublevels of the term energy. 

" 2S + 1 equals the number of J values (and hence the number of
sublevels) for the particular L value when L > S.

" When L = 0 or L < S the number of J values is 2L + 1.

 " For a given L value the energy differences between the sublevels of
various J values are small and can be ignored for our purposes.

L We will omit the J values from our term symbols.

! The multiplicity indicated by the superscript 2S + 1 is retained, because
it relates directly to the spin state (and hence the number of unpaired
electrons) of the term.  

L 2S + 1 is often called the spin multiplicity and used without
reference to J.



Relationship of L to
Resultant Orbital Angular Momentum

and
Resultant Orbital Magnetic Moment

L = Overall orbital angular momentum quantum number
= Resultant orbital quantum number

! L is related to the resultant orbital angular momentum and to the
resultant orbital magnetic moment of the system, obtained by vectorial
addition of the vectors related to the l quantum numbers of the
individual electrons.

" The orbital angular momentum for individual electrons has a
magnitude of [l(l + 1)]½(h/2π)

" Likewise the resultant orbital angular momentum has a magnitude of 
[L(L + 1)]½(h/2π).  

! There are a variety of ways in which the individual l values can add
vectorially, so a variety of L values can result for a given configuration
of electrons.
" This is true even when all electrons have the same individual l values.
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Vector Addition of Individual l Vectors to Give L Values
for Configurations p2 and d2

 



Term Symbol Notation

L value 0 1 2 3 4 5 6 7 ...

State S P D F G H I K ...

! Capital letter designations follow orbital notations (s, p, d, f)

! After L = 2 notation proceeds alphabetically (with the omission of J, to
avoid confusion with the total angular momentum quantum number, J).  

Example:
Configuration p2 gives rise to the terms S, P, and D

Example:
Configuration d2 gives rise to the terms S, P, D, F, and G



Relationship Between L and ML

! For a given term the magnitude of the resultant orbital angular
momentum is fixed as [L(L + 1)]½(h/2π). 

" However, the vector for the momentum can have a number of
allowed orientations in space relative to an applied magnetic field,
which defines the z direction of the system.

" The various allowed orientations are associated with the overall
orbital magnetic quantum number, ML, which can take on the 2L + 1
values 

ML = L, L - 1, ..., 1 - L, -L

" 2L + 1 may be regarded as the orbital multiplicity or orbital
degeneracy of the term.  

" Each orientation has a projection on z whose magnitude is ML(h/2π). 
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Example: ML Orientations for a D Term

! A D term (L = 2, 2L + 1 = 5) has five possible orientations
corresponding to ML = +2, +1, 0, -1, -2. 

! The magnitude of the resultant orbital angular momentum is

[L(L + 1)]½(h/2π) = [(2)(2+1)]½(h/2π) = /6 (h/2π)

! Each orientation of the resultant orbital angular momentum has a
projection on z whose magnitude is 

ML(h/2π) = +2h/2π, +h/2π, 0, –h/2π, –2 h/2π



Relationship Between ML and ml

! In the Russell-Saunders coupling scheme values of ML can be obtained
as the sum of the ml values of the individual electrons; i.e.,

ML = Gml.  

! Thus it is possible to assign an ML value for each and every microstate
of a configuration.  

! Since ML represents the possible orientations of the orbital angular
momentum vector, it follows that a given L value must arise from a
complete set of microstates with the 2L + 1 values ML = L, L - 1, ..., 1 -
L, -L , which identify these orientations.



Overall Spin Quantum Number, S

! The overall spin quantum number, S, defines the spin state of the term,
and 2S + 1 defines the spin multiplicity.  

S 2S + 1 State Multiplicity

0 1 singlet

1/2 2 doublet

1 3 triplet

3/2 4 quartet (quadruplet)

... ... ...

! S is related to the resultant spin angular momentum and to the resultant
spin magnetic moment of the system.  

! S can be obtained by vectorial addition of the spin angular momentum
vectors related to the s quantum numbers of the individual electrons.

! The magnitude of the resultant spin angular momentum is 
[S(S + 1)]½(h/2π)

! S is related to an overall spin magnetic quantum number, MS, whose
allowed values are

MS = S, S + 1, ..., 1 - S, -S
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Allowed Orientations of the Spin Angular Momentum

! The 2S + 1 values indicate the allowed orientations of the spin angular
momentum vector relative to an applied magnetic field, which defines
the z direction of the system.  

! The spin multiplicity, given as 2S + 1, represents the spin degeneracy of
a particular spin state.

! For a given spin state the magnitude of the spin angular momentum is
fixed as [S(S + 1)]½(h/2π), but its projections on the z axis in the
allowed orientations are given by MS(h/2π). 

Example: S = 1, MS = -1, 0, +1



Relationship Between MS and ms

 ! In the Russell-Saunders scheme we assume that MS is the sum of ms

values of the individual electrons; i.e., 

MS = Gms

where ms = ±½.  

! Each microstate can be assigned a value of MS.  

! Since MS represents the possible orientations of the spin angular
momentum vector, it follows that a given S value must arise from a
complete set of microstates with the 2S + 1 values MS = S, S - 1, ..., 
1 - S, -S.



1Two good methods have been described by K. E. Hyde, J. Chem. Educ., 1975, 52, 87
and E. R. Tuttle, Amer. J. Phys., 1967, 35, 26.

Relationship Between
ML and MS of Microstates

and
L and S of Terms

L A term having particular values of both L and S must arise from
the set of microstates that has the necessary 2L + 1 values of ML

and also the necessary 2S + 1 values of MS.

! This means that one can identify all the allowed terms of a
configuration by systematically arranging all microstates in such a way
as to be able to cull the sets of  ML and MS values with the appropriate
ranges that define the various terms.  

! This is a straightforward but tedious process, especially for
configurations with large numbers of microstates.  

( We will not concern ourselves with the mechanics of this task,
except to note that a variety of techniques have been developed
to carry out the labor.1



Equivalent Electrons Have Fewer Possible Terms

Example: d2

! We have seen by vector addition that the configuration d2 gives rise to
the terms 

S, P, D, F, G

! The only possible spin states are S = 0 (paired) and S = 1 (unpaired).

  " Thus, the spin multiplicities of the terms can only be singlets and
triplets.  

" If the two electrons are in different subshells (e.g., 3d14d1) all terms
will occur as both singlets and triplets. 

" If we stipulate that the two electrons are equivalent, meaning a
configuration nd2 within the same subshell, the Pauli exclusion
principle will limit the possible combinations of ml and ms, so only
certain terms can be singlet or triplets.
• For the configuration nd2 the allowed terms are

1S, 3P, 1D, 3F, 1G



Relationship Between Total Degeneracy and Term Degeneracies

Example: nd2 YYYY 1S, 3P, 1D, 3F, 1G

! We know that the terms for two equivalent d electrons arise from 45
microstates.

" Therefore the sum of the degeneracies of all these terms must equal
this number.

LLLL The degeneracy of each term, equivalent to the number of
microstates giving rise to it, is the product of its spin
degeneracy times its orbital degeneracy; i.e., 

(2S + 1)(2L + 1).  

! For the set of terms for nd2 we have 

Term 1S 3P 1D 3F 1G Dt

Degeneracy (1)(1) = 1 (3)(3) = 9 (1)(5) = 5 (3)(7) = 21(1)(9) = 9 45



Terms for Free Ion d n Configurations

dn Free Ion Terms Dt

d0, d10 1S 1

d1, d9 2D 10

d2, d8 1S, 1D, 1G, 3P, 3F 45

d3, d7 2P, 2D(2), 2F, 2G, 2H, 4P, 4F 120

d4, d6 1S(2), 1D(2), 1F, 1G(2), 1I, 3P(2), 3D, 3F(2), 3G, 3H, 5D 210

d5 2S, 2P, 2D(3), 2F(2), 2G(2), 2H, 2I, 4P, 4D, 4F, 4G, 6S 252

L Note that in each case the total degeneracy of terms is equal to the
calculated value of Dt. 

! The ground state term can be identified by applying Hund's rules.

! In general the actual energies of the terms, and hence their relative
ordering, must be determined from analysis of spectroscopic data.


