Terms of Free Ions with $\boldsymbol{d}^{\boldsymbol{n}}$ Configurations

- The usual notation for electronic configurations (e.g., $3 d^{2}$) does not tell us which specific orbitals are occupied, except when a degenerate set of orbitals is half filled or fully filled.
- Except for a fully filled subshell, we rarely presume to know which of the two possible spin states individual electrons have ($m_{\mathrm{s}}= \pm 1 / 2$).

Example: There are ten ways of arranging the single electron in the configuration $n d^{1}(n=3,4,5, \ldots)$

$m_{l}=-2$	$m_{l}=-1$	$m_{l}=0$	$m_{l}=+1$	$m_{l}=+2$
1				
	1			
		1		
			1	
				1
1				
	1			
		1		
			1	
				1

- The number of possible arrangements increases greatly with additional electrons.

Electron Arrangements for $\boldsymbol{n d} \boldsymbol{d}^{\mathbf{2}}$ (Same Spins)

- Consider the 20 possible ways of arranging electrons for the configuration $n d^{2}(n=3,4,5, \ldots)$, in which the two electrons have the same spins (both $m_{s}=+1 / 2$ or $m_{s}=-1 / 2$) :

$m_{l}=-2$	$m_{l}=-1$	$m_{l}=0$	$m_{l}=+1$	$m_{l}=+2$
1	1			
1		1		
1			1	
1				1
	1	1		
	1		1	
	1			1
		1	1	
		1		1
			1	1
\downarrow	\downarrow			
\downarrow		\downarrow		
\downarrow			\downarrow	
\downarrow				\downarrow
	\downarrow	\downarrow		
	\downarrow		\downarrow	
	\downarrow			\downarrow
		\downarrow	\downarrow	
		\downarrow		\downarrow
			\downarrow	\downarrow

Electron Arrangements for $\boldsymbol{n d} \boldsymbol{d}^{\mathbf{2}}$ (Opposite Spins)

- There are 25 additional configurations with opposite spins.

$m_{l}=-2$	$m_{l}=-1$	$m_{l}=0$	$m_{l}=+1$	$m_{l}=+2$
1	\downarrow			
1		\downarrow		
1			\downarrow	
1				\downarrow
	1	1		
	1		1	
	1			\downarrow
		1	\downarrow	
		1		\downarrow
			1	\downarrow
\downarrow	\uparrow			
\downarrow		\uparrow		
\downarrow			\uparrow	
\downarrow				1
	।	\uparrow		
	\downarrow		\uparrow	
	\downarrow			1
		\checkmark	\uparrow	
		\downarrow		\uparrow
			\downarrow	1
11				
	11			
		11		
			11	
				11

Microstates

- Each set of individual m_{l} and m_{s} values constitutes a microstate of the configuration.
- Some microstates may be allowable arrangements in the ground state, and others may be allowable arrangements in some higher-energy excited state.
- With additional electrons the number of microstates rises dramatically.
- For any allowed number of electrons in a set of degenerate orbitals (called equivalent electrons), the number of possible microstates is given by

$$
D_{t}=\frac{\left(2 N_{o}\right)!}{\left(2 N_{o}-N_{e}\right)!N_{e}!}
$$

$D_{t}=\quad$ number of possible microstates $=$ total degeneracy of the configuration
$N_{o}=$ number of degenerate orbitals in the set or subshell
$N_{e}=$ number of electrons in the configuration
Example: $n d^{2}$

$$
D_{t}=\frac{(2 \times 5)!}{[(2 \times 5)-2)]!2!}=\frac{10!}{8!\times 2!}=\frac{3628800}{(40320)(2)}=45
$$

Microstates for $\boldsymbol{n} \boldsymbol{d}^{\mathbf{1 - 1 0}}$

configuration	d^{1}	d^{2}	d^{3}	d^{4}	d^{5}	d^{6}	d^{7}	d^{8}	d^{9}	d^{10}
microstates	10	45	120	210	252	210	120	45	10	1

The number of microstates (the total degeneracy) for a configuration $n d^{x}$ is the same as for $n d^{10-x}$.

Microstates and Terms

- In any microstate both the individual orbital magnetic moments (related to m_{l}) and spin magnetic moments (related to m_{s}) will interact with one another, resulting in an energy state or term for the configuration.
- Except for a fully filled configuration, no one microstate uniquely gives rise to a particular energy for the configuration.
- A number of microstates generally contribute to a single term.
- Terms are usually degenerate according to the number of microstates giving rise to them.
- In a ligand field, degeneracies among all the microstates comprising a particular free-ion term may be partially lifted.

Russell-Saunders Coupling Scheme

- The ways in which individual m_{l} and m_{s} values interact are not easily evaluated for a real atom or ion.
- In fact, the notion that we can assign individual m_{l} and m_{s} values to the electrons and assess their interactions on that basis is really an extreme extension of the one-electron wave mechanical model.
- The Russell Saunders coupling scheme is a reasonably good first approximation for assessing the origins of the term energies in many cases in terms of summations of individual electron m_{l} and m_{s} values.
- The Russell-Saunders coupling scheme can be applied successfully to interpreting the term energies of first and second row transition metals
- Less successful with the third row transition elements
- Hopelessly inadequate with f-block transition elements (i.e., lanthanides and actinides).

Free-Ion Term Symbols

- The various terms that can exist for a particular configuration are indicated by a term symbol of the form

$$
{ }^{2 S+1} L
$$

- L is related to the overall orbital angular momentum for the system of electrons.
- Values of L may be $0,1,2, \ldots$
- S is related to the overall spin angular momentum for the system of electrons.
- Values of S may be $0,1 / 2,1,3 / 2, \ldots$
$\circ L$ and S are analogous to the quantum numbers l and s for single electrons.
- The left superscript number $2 S+1$ is the multiplicity of the term.

The J Quantum Number

- A third quantum number, J, is often added to term symbols as a right subscript.

$$
{ }^{2 S+1} L_{J}
$$

- J relates to the total angular momentum arising from spin-orbital coupling.

○ Allowed J values are $L+S, L+S-1, L+S-2, \ldots,|L-S|$.

- For a given L value, the various values of J represent closely spaced energy sublevels of the term energy.
- $2 S+1$ equals the number of J values (and hence the number of sublevels) for the particular L value when $L>S$.
- When $L=0$ or $L<S$ the number of J values is $2 L+1$.
- For a given L value the energy differences between the sublevels of various J values are small and can be ignored for our purposes.

We will omit the J values from our term symbols.

- The multiplicity indicated by the superscript $2 S+1$ is retained, because it relates directly to the spin state (and hence the number of unpaired electrons) of the term.
(T) $2 S+1$ is often called the spin multiplicity and used without reference to J.

Relationship of L to
 Resultant Orbital Angular Momentum and
 Resultant Orbital Magnetic Moment

$L=$ Overall orbital angular momentum quantum number
$=$ Resultant orbital quantum number

- L is related to the resultant orbital angular momentum and to the resultant orbital magnetic moment of the system, obtained by vectorial addition of the vectors related to the l quantum numbers of the individual electrons.
- The orbital angular momentum for individual electrons has a magnitude of $[l(l+1)]^{1 / 2}(h / 2 \pi)$
- Likewise the resultant orbital angular momentum has a magnitude of $[L(L+1)]^{1 / 2}(h / 2 \pi)$.
- There are a variety of ways in which the individual l values can add vectorially, so a variety of L values can result for a given configuration of electrons.
- This is true even when all electrons have the same individual l values.

Vector Addition of Individual \boldsymbol{l} Vectors to Give L Values for Configurations \boldsymbol{p}^{2} and \boldsymbol{d}^{2}

$$
l=1 C_{l=2}
$$

Term Symbol Notation

L value	0	1	2	3	4	5	6	7	\ldots
State	S	P	D	F	G	H	I	K	\ldots

- Capital letter designations follow orbital notations (s, p, d, f)
- After $L=2$ notation proceeds alphabetically (with the omission of J, to avoid confusion with the total angular momentum quantum number, J).

Example:
Configuration p^{2} gives rise to the terms S, P, and D
Example:
Configuration d^{2} gives rise to the terms S, P, D, F, and G

Relationship Between L and M_{L}

- For a given term the magnitude of the resultant orbital angular momentum is fixed as $[L(L+1)]^{1 / 2}(h / 2 \pi)$.
- However, the vector for the momentum can have a number of allowed orientations in space relative to an applied magnetic field, which defines the z direction of the system.
- The various allowed orientations are associated with the overall orbital magnetic quantum number, M_{L}, which can take on the $2 L+1$ values

$$
M_{L}=L, L-1, \ldots, 1-L,-L
$$

- $2 L+1$ may be regarded as the orbital multiplicity or orbital degeneracy of the term.
- Each orientation has a projection on z whose magnitude is $M_{L}(h / 2 \pi)$.

Example: \boldsymbol{M}_{L} Orientations for a \boldsymbol{D} Term

- A D term $(L=2,2 L+1=5)$ has five possible orientations corresponding to $M_{L}=+2,+1,0,-1,-2$.
- The magnitude of the resultant orbital angular momentum is

$$
[L(L+1)]^{1 / 2}(h / 2 \pi)=[(2)(2+1)]^{1 / 2}(h / 2 \pi)=\sqrt{6}(h / 2 \pi)
$$

- Each orientation of the resultant orbital angular momentum has a projection on z whose magnitude is

$$
M_{L}(h / 2 \pi)=+2 h / 2 \pi,+h / 2 \pi, 0,-h / 2 \pi,-2 h / 2 \pi
$$

Relationship Between M_{L} and \boldsymbol{m}_{l}

- In the Russell-Saunders coupling scheme values of M_{L} can be obtained as the sum of the m_{l} values of the individual electrons; i.e.,

$$
M_{L}=\Sigma m_{l} .
$$

- Thus it is possible to assign an M_{L} value for each and every microstate of a configuration.
- Since M_{L} represents the possible orientations of the orbital angular momentum vector, it follows that a given L value must arise from a complete set of microstates with the $2 L+1$ values $M_{L}=L, L-1, \ldots, 1-$ $L,-L$, which identify these orientations.

Overall Spin Quantum Number, S

- The overall spin quantum number, S, defines the spin state of the term, and $2 S+1$ defines the spin multiplicity.

S	$2 S+1$	State Multiplicity
0	1	singlet
$1 / 2$	2	doublet
1	3	triplet
$3 / 2$	4	quartet (quadruplet)
\ldots	\ldots	\ldots

- S is related to the resultant spin angular momentum and to the resultant spin magnetic moment of the system.
- S can be obtained by vectorial addition of the spin angular momentum vectors related to the s quantum numbers of the individual electrons.
- The magnitude of the resultant spin angular momentum is

$$
[S(S+1)]^{1 / 2}(h / 2 \pi)
$$

- S is related to an overall spin magnetic quantum number, M_{S}, whose allowed values are

$$
M_{S}=S, S+1, \ldots, 1-S,-S
$$

Allowed Orientations of the Spin Angular Momentum

- The $2 S+1$ values indicate the allowed orientations of the spin angular momentum vector relative to an applied magnetic field, which defines the z direction of the system.
- The spin multiplicity, given as $2 S+1$, represents the spin degeneracy of a particular spin state.
- For a given spin state the magnitude of the spin angular momentum is fixed as $[S(S+1)]^{1 / 2}(h / 2 \pi)$, but its projections on the z axis in the allowed orientations are given by $M_{S}(h / 2 \pi)$.

Example: $S=1, M_{S}=-1,0,+1$

Relationship Between \boldsymbol{M}_{S} and \boldsymbol{m}_{s}

- In the Russell-Saunders scheme we assume that M_{S} is the sum of m_{s} values of the individual electrons; i.e.,

$$
M_{S}=\Sigma m_{s}
$$

where $m_{s}= \pm 1 / 2$.

- Each microstate can be assigned a value of M_{S}.
- Since M_{S} represents the possible orientations of the spin angular momentum vector, it follows that a given S value must arise from a complete set of microstates with the $2 S+1$ values $M_{S}=S, S-1, \ldots$, $1-S,-S$.

Relationship Between
 M_{L} and M_{S} of Microstates
 and
 L and S of Terms

A term having particular values of both L and S must arise from the set of microstates that has the necessary $2 L+1$ values of M_{L} and also the necessary $2 S+1$ values of M_{S}.

- This means that one can identify all the allowed terms of a configuration by systematically arranging all microstates in such a way as to be able to cull the sets of M_{L} and M_{S} values with the appropriate ranges that define the various terms.
- This is a straightforward but tedious process, especially for configurations with large numbers of microstates.
(-) We will not concern ourselves with the mechanics of this task, except to note that a variety of techniques have been developed to carry out the labor. ${ }^{1}$

Equivalent Electrons Have Fewer Possible Terms

Example: \boldsymbol{d}^{2}

- We have seen by vector addition that the configuration d^{2} gives rise to the terms

$$
S, P, D, F, G
$$

- The only possible spin states are $S=0$ (paired) and $S=1$ (unpaired).
- Thus, the spin multiplicities of the terms can only be singlets and triplets.
- If the two electrons are in different subshells (e.g., $3 d^{l} 4 d^{l}$) all terms will occur as both singlets and triplets.
- If we stipulate that the two electrons are equivalent, meaning a configuration $n d^{2}$ within the same subshell, the Pauli exclusion principle will limit the possible combinations of m_{l} and m_{s}, so only certain terms can be singlet or triplets.
- For the configuration $n d^{2}$ the allowed terms are

$$
{ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F,{ }^{1} G
$$

Relationship Between Total Degeneracy and Term Degeneracies

$$
\text { Example: } n d^{2}={ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F,{ }^{1} G
$$

- We know that the terms for two equivalent d electrons arise from 45 microstates.
- Therefore the sum of the degeneracies of all these terms must equal this number.

The degeneracy of each term, equivalent to the number of microstates giving rise to it, is the product of its spin degeneracy times its orbital degeneracy; i.e., $(2 S+1)(2 L+1)$.

- For the set of terms for $n d^{2}$ we have

Term	${ }^{1} S$	${ }^{3} P$	${ }^{1} D$	${ }^{3} F$	${ }^{1} G$	D_{t}
Degeneracy	$(1)(1)=1$	$(3)(3)=9$	$(1)(5)=5$	$(3)(7)=21$	$(1)(9)=9$	45

Terms for Free Ion $\boldsymbol{d}^{\boldsymbol{n}}$ Configurations

d^{n}	Free Ion Terms	D_{t}
d^{0}, d^{10}	${ }^{1} S$	1
d^{1}, d^{9}	${ }^{2} D$	10
d^{2}, d^{8}	${ }^{1} S,{ }^{1} D,{ }^{1} G,{ }^{3} P,{ }^{3} F$	45
d^{3}, d^{7}	${ }^{2} P,{ }^{2} D(2),{ }^{2} F,{ }^{2} G,{ }^{2} H,{ }^{4} P,{ }^{4} F$	120
d^{4}, d^{6}	${ }^{1} S(2),{ }^{1} D(2),{ }^{1} F,{ }^{1} G(2),{ }^{1} I,{ }^{3} P(2),{ }^{3} D,{ }^{3} F(2),{ }^{3} G,{ }^{3} H,{ }^{5} D$	210
d^{5}	${ }^{2} S,{ }^{2} P,{ }^{2} D(3),{ }^{2} F(2),{ }^{2} G(2),{ }^{2} H,{ }^{2} I,{ }^{4} P,{ }^{4} D,{ }^{4} F,{ }^{4} G,{ }^{6} S$	252

Note that in each case the total degeneracy of terms is equal to the calculated value of D_{t}.

- The ground state term can be identified by applying Hund's rules.
- In general the actual energies of the terms, and hence their relative ordering, must be determined from analysis of spectroscopic data.

