
Photophysical requirements for absorption/emission

• For any photophysical process the following conservation laws must be

followed:

� conservation of energy (E = hν ; ∆E = 0)

� conservation of angular momentum (∆l = 0)

Electronic transitions must generate (abs) or destroy (emission) a

node.

� finite interaction rule

the transition dipole moment (µµµµge) which determines the magnitude

of light absorption must be finite.

� frequency matching (resonance) rule (ν = E / h)

there must be a matching of frequency (ν) of the oscillating light

wave and a frequency that corresponds to the formation of a

transition dipole moment.



Physical basis for light absorption

• When a photon, i.e. an oscillating electromagnetic field, encounters a

chromophore possessing quantized electronic states it may be absorbed

and its energy transferred to an electron to partake in an electronic

transition.

Ephoton = ∆Eelectronic transition = hν



• In the classical model the photon is considered an oscillating electromagnetic

field.

• An excited state is considered as a harmonic oscillator, in essence an oscillating

electronic dipole, e.g. HOMO-LUMO

• When both oscillations share the same frequency they are said to be in resonance

with each other – one criteria for photon absorption.

Ephoton = ∆Eelectronic transition = hν

Classical description for light absorption

(harmonic oscillator model)



• When resonance is met and an electronic transition occurs the photon energy is

quantitatively absorbed.

• Perturbed electron density of the chromophore oscillates between both electronic

states involved with a frequency of ν (barring some thermal loss) causing a change

in the molecule’s dipole moment (∆µµµµ = µµµµee - µµµµgg)

Photoexcited states are dynamic electronic states!

• It is the frequency of oscillation of the transition dipole moment (µµµµge) that is in

resonance with the incident electromagnetic radiation. Classically described as a

vibrating harmonic oscillator.

• The transition dipole moment (µµµµge) lasts only for the duration of the electronic

transition and arises because of the process of electron displacement during the

transition.

• The molar extinction coefficient (ε) is proportional to the square of the transition

dipole moment.

ε ∝ µµµµge
2



• Schematic of the electronic component of an electromagnetic wave

interacting with the Bohr orbit of the H atom (classical model).



Physical basis for light absorption – Quantum model
• Considering again the H atom we now use the 1s wavefunction in our model which

has R3 symmetry and hence no net dipole when unperturbed.

• An electromagnetic wave may provide energy, providing it meets the resonance

criteria, for the wavefunction to distort from its equilibrium position such that the

electron density oscillates beyond its equilibrium position.

• This 1s oscillation corresponds to “attractive and repulsive forces”, according to the

phase of the light wave, generating an appearance similar to that of a p orbital.



• In other words, upon absorption of a photon the angular momentum of the

wavefunction changes from l = 0 to l = 1.

� It is important to note that a photon possesses one unit of spin angular momentum.

• Thus, this example shows how electronic excitation obeys two important

requirements for a photochemical process:

1) The conservation of energy (∆E = 0)

2) The conservation of angular momentum(∆l = 0)



Quantum model for the H−−−−H molecule

• H2 is cylindrically symmetrical

(D∞h) which gives rise to axially

parallel and perpendicular

electronic excited state

oscillations.

• This gives rise to σ* and π
orbitals each having one extra

node, ∆l = +1.

• The σ → σ* electronic transition

is perpendicular to the

molecular axis.

• The σ → π electronic transition

is parallel to the molecular axis.



• Production of a single node in the wavefunction corresponds to the change of

angular momentum (∆l = +1) by a single unit ħ ( = h/2π)

• The magnitude of charge separation, as the electron density is redistributed in an

electronically excited state, is determined by the polarizability of the electron

cloud (αααα) which is defined by the transition dipole moment (µµµµge)

α = α = α = α = µµµµge / E (E = electrical force)

µµµµge = = = = e r (e = electron charge,

r = extent of charge displacement)

µµµµgg = 5.95 D HOMO

LUMO



• The previous description allows us to introduce the selective absorption of

polarized light by a chromophore.

• Upon photon absorption by the 1s wavefunction of the H atom the electron cloud

oscillates in the same plane as the electromagnetic wave (also producing the

nodal plane of a 2p orbital at 90º to this plane).

• The 1s wavefunction can be excited along any one of the three Cartesian axes

producing one of three possible 2p orbitals (ml = -1, 0, +1).

Absorption of polarized light



Absorption coefficient (α)(α)(α)(α)

α = absorption coefficient

I0 = light intensity before incident on sample 

I = light intensity after passing through sample

A = absorbance

T = transmission

c = concentration (M)

l = path length (cm)

N = atomic number density

σ = optical cross section (α / N)
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• Typically used for solid and gas phase samples
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Transmission of light by a dilute solution
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T = transmission

I0 = light intensity before incident on sample 

I = light intensity after passing through sample

c = concentration (M)

l = path length (cm)

α = absorption coefficient (constant)

ε = molar extinction coefficient (L mol-1 cm-1)



Beer-Lambert law
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A = absorbance (aka optical density or o.d.)

T = transmission

I0 = light intensity before incident on sample 

I = light intensity after passing through sample

c = concentration (M)

l = path length (cm)

ε = molar extinction coefficient (L mol-1 cm-1)

� = log 1
� = log ��

� = log 10� � �
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O.D. % Transmission % Absorption

0.1 99 1

1.0 10 90

2.0 1 99





Eigenfunctions, eigenstates & eigenvalues

• Using the Schrödinger wave equation quantum mechanics provides an

understanding of molecular structure, molecular energetics, and molecular dynamics

based on computations that “operate” mathematically on the wavefunction ΨΨΨΨ

H Ψ = Ψ = Ψ = Ψ = E ΨΨΨΨ

If the mathematical form of ΨΨΨΨ is known precisely for a given molecule it is possible not

only to compute the electronic, nuclear, and spin configurations of a molecule but also to

compute the average value of any experimental observable property (electronic energy,

dipole moment, nuclear geometry, electron spin energies, probabilities for transitions

between electronic states, etc.) of any state of the molecule for an assumed set of initial

conditions and interactions provided by internal and external forces.

• In other words, for every measurable property of a molecular system there is a

mathematical function H that operates on the wavefunction ΨΨΨΨ to produce an

eigenvalue E that corresponds to an experimental measurement of that property of

the system.



• The Schrödinger wave equation tells us that energy is quantized in discrete states,

known as eigenstates ; eigen (deutsch) = proper

• Each of these states corresponds to a specific wave function ΨΨΨΨ with a specific energy E

• The wavefunctions are called eigenfunctions and their corresponding energies are

called eigenvalues of the operator H

• A complete eigenfunction ΨΨΨΨ represents the entire molecular structure (electronic,

vibrational and spin)

• Therefore by choosing an appropriate Hamiltonian operator H the following

eigenvalues may be determined

� electronic, vibrational, spin structures and energies

� electronic density distributions

� probability of light absorption and light emission

� rates of photophysical transitions

� role of electron spin in determining excited state properties



• The mathematical operator or Hamiltonian H is related to the forces or interactions

that determine the measurable properties of a system e.g., energy, dipole moment,

angular momentum, transition probability etc.

� While quantum mechanics can predict discrete eigenvalue solutions E in reality, as

experimentalists, we observe average eigenvalue distributions Eav for large numbers of

molecules…..known as the expectation value.

• Expectation values for a molecular system are extracted from a wavefunction by

applying the Hamiltonian operator and then computing what is know as the matrix

element

� The matrix element involves “normalization” of the component wavefunctions and

integrating resultant values to give an approximate solution to the wave equation.

��� = � Ψ	�	Ψ � 	 Ψ � Ψ

• The expectation value of any observable molecular property of interest P (eigenstate,

dipole moment, transition probability etc.) can be evaluated in terms of the matrix

element.

expectation
value

matrix
element



Born-Oppenheimer approximation

ΨΨΨΨ = ΨΨΨΨelectronic + ΨΨΨΨvibrational + ΨΨΨΨrotational

� The Born-Oppenheimer Approximation is the assumption that electronic,

vibrational and rotational wavefunctions can be treated independently.

• This assumption is based upon the following premise

Eelectronic >> Evibrational >> Erotational

• This approximation greatly simplifies solution of the Schrödinger wave equation as

it allows an approximate wavefunction ΨΨΨΨ0 to be independently solved determining

approximate eigenvalues (potential energy) for any selected static nuclear

framework (χχχχ ,,,, kinetic energy = 0) and specified spin configuration (S)

Ψ ≅ Ψ0 χ S

• This approximation breaks down in the presence of significant vibronic coupling or

spin-orbit coupling.



Qualitative characteristics of wavefunctions (revision)

• Only the square of the wavefunction is subject to direct experimental observation 

(Ψ0
2 , χ2 or S2)

• Ψ0
2 , χ2 and S2 relate to the probability of finding the electrons, nuclei, and spins, 

respectively, at particular points in space in a molecular structure thus providing  a 

means of pictorially representing electron density, nuclear geometry and spin.

• Ψ0 , χ and S are subject to symmetry considerations which provide a basis for 

selection rules governing transitions between states.

• Wavefunctions of similar energies may “mix” , i.e. be in resonance with each 

other. Wavefunctions having identical energies are termed degenerate.

• Having a knowledge of

(i) various state electronic, nuclear and spin configurations

(ii) a qualitative ranking of their corresponding energies

enables a state energy level (aka Jablsonki) diagram to be readily constructed.



Expectation values and matrix elements

��� � �ψ	�	ψ � 	 ψ � ψ

� The matrix element  <ΨPΨ >  is the quantum mechanical representation of the 

energy of an observable property P of a molecular system.

To avoid calculating the matrix element we visualize its components using constructs 

of classical mechanics to then deduce qualitative conclusions.

"#$ �	 Ψ�	χ	S	 " Ψ�	χ	S
"#$ �	 	 '(')…'+ 	χ	S	 " 	 '(')…'+	 χ	S	

• In the zero-order approximation Ψ0 is calculated as a product of one-electron

molecular orbital wavefunctions φn for a one-electron molecule.

• The first-order approximation introduces electron-electron interactions by mixing

wavefunctions to approximate E with more accuracy……perturbation theory!

expectation
value

matrix
element



Atomic orbitals, Molecular orbitals, electronic states 

and configurations, e.g. formaldehyde

• To visualize Ψelectronic we must

approximate the structure of Ψ0
2 as

a configuration of overlapping, but

non-interacting, one-electron

occupied orbitals φn

• H2C=O has a total of 16 electrons.

Using a classical approach for MO

energies, # of electrons, Pauli and

Aufbau principle we can build a

basic MO diagram for the molecule.

• The electronic configuration on the

right represents an approximation of

the S0 wavefunction for

formaldehyde, i.e. Ψ0(S0)

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H’

σC-H

2sO

1sC

1sO

Non-bonding

Core electrons

HOMO

LUMO

Valence

electrons





ψψψψ0(S0)

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H

2sO

2sC

1sO

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H

2sO

2sC

1sO

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H

2sO

2sC

1sO

ψψψψ0(S1) ψψψψ0(T1)

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H

2sO

2sC

1sO

σ*C-H

σ*C-O

π*C=O

nO

πC=O

σC-O

σC-H

2sO

2sC

1sO

ψψψψ0(S2) ψψψψ0(T2)



State
Characteristic 

orbitals

Characteristic spin 

electronic 

configuration

Shorthand

description of 

state

S2 π , π* (π ↑)1 (n)2 (π* ↓)1 1(π , π*)

T2 π , π* (π ↑)1 (n)2 (π* ↑)1 3(π , π*)

S1 n , π* (π)2 (n ↑)1 (π* ↓)1 1(n , π*)

T1 n , π* (π)2 (n ↑)1 (π* ↑)1 3(n , π*)

S0 π , n (π)2 (n)2 (π*)0 1[(π)2 (n)2]

• Each electronic state may be described in terms of a characteristic electronic

configuration , which in turn may be described in terms of the HOMO and LUMO

and in terms of a characteristic spin configuration, either singlet or triplet.
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Electron correlation and exchange energy
Aufbau principle

Orbitals of lower energy are filled first and only then orbitals of higher energy are 

filled.

Madelung rule

Orbitals fill up on the order of the quantum number sum ‘n + l’

Pauli exclusion principle

No two electrons can have the same four quantum numbers, i.e. if n, l, and ml are the 

same, ms must be different such that the electrons have opposite spins

Hunds rule of maximum multiplicity

For a given electron configuration, the maximum multiplicity term (2S + 1) has lower 

energy

• The Pauli exclusion principle and Hund’s rules of maximum multiplicity dictate that 

the term with maximum multiplicity (2S + 1) has the lowest energy due reduced 

electron-electron repulsion.

Tn < Sn always applies for the same electronic configuration !!!

• In the zero-order approximation of Ψ0(Sn) electron-electron repulsions are 

ignored.



• In the first-order approximation of Ψ0(Sn) electron-electron repulsions are taken 

into account.

• Applying the Born-Oppenheimer approximation the nuclear geometry is fixed and 

attractive forces between the negatively charged electrons and the positively 

charged nuclei contribute a constant stabilization energy.

• The differences in energy between different states in this approximation are due 

entirely to electron-electron repulsions where the classical form of H is

, � 

)
-()

• The magnitude of electron-electron repulsion may be computed by integrating

repulsive interactions (matrix element) over the entire molecular volume (assuming

a fixed nuclear configuration)

1. Coulombic integral (K) - electron repulsions due to electrostatic interactions

2. Electron exchange energy (J) – a first-order quantum mechanical correction to

K required by symmetry properties of Pauli’s exclusion principle.



• The matrix element aka electron exchange integral (J) has the form

.	 ≃ 	 Ψ( 

)
-() Ψ)

• The electron exchange integral (> 0) is a purely quantum mechanical phenomenon

since it amounts to a quantum mechanical correction to the classical electronic

distribution (Pauli)

• The electron exchange integral does note take into account the influence of

electron spin angular momentum on electron-electron repulsion – only symmetry.

• Taking again H2C=O as an example, and restricting the calculation to the active

MOs in the lowest energy transition:

ES = E0 (n, π*)  +  K (n, π*) +  J (n, π*)

ET = E0 (n, π*) +  K (n, π*)  − J (n, π*)

Electron exchange energy    =      ES – ET =      ∆EST =      2 J

zero-order first-order

(classical)

first-order

(quantum m)



Singlet-triplet splitting in H2C=O

• Estimation of ∆EST for S1/T1 and S2/T2 in H2C=O requires qualitative evaluation of 

the magnitude of the electron exchange integrals for J(n, π*) and J(π, π*)

. 0, 2∗ �  0 1 , 2∗ 2 
)
-() 0 2 , 2∗ 1

. 0, 2∗ ∼  0 1 , 2∗ 2 0 2 , 2∗ 1  ∼  0  2∗

• The orbital overlap integral 0  2∗ may be visualized as a measure of the mutual 

resemblance of the two wave functions (aka mixing/resonance).

• If both wavefunctions are identical their normalized orbital overlap integral is unity, 

e.g. 2   2  = 1

• If both wavefunctions are orthogonal the orbital overlap integral is zero.





• When the orbital overlap integral '6  '7 
= 0 , so does the electron exchange 

integral such that J = 0 , ES = ET and ∆EST = 0

ES/T = E0 (n, π*)  +  K (n, π*)  ± J (n, π*)

. 0, 2∗  ∼  0  2∗

• This is contradictory to our rule:

Tn < Sn always for the same electronic configuration !!!

What does this mean for ΨΨΨΨ(n, ππππ*) in H2C=O ?

• We have effectively just derived a selection rule for singlet triplet energies of (n, π*)

excited states

• In contrast the value for J(π, π*) is finite and large. 

• We can effectively conclude that ∆EST (n, π*) < ∆EST (π, π*) in general because the 

overlap of a π with a π * orbital will usually be greater than the overlap of a n and a 

π * orbital.



A qualitative state energy diagram for formaldehyde, including singlet-

triplet splittings and electronic configurations of states.



Molecule
Electronic 

configuration
∆∆∆∆EST (kcal mol-1)

H2C=CH2 π, π* 70

H2C=CH−CH=CH2 π, π* 60

H2C=CH−CH=CH−CH=CH2 π, π* 48

π, π* 52

π, π* 38

π, π* 34

π, π* 30

H2C=O n, π* 10

(CH3)2C=O n, π* 7

Ph2C=O n, π* 5
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• For electronic transitions between states of the different spin, such as S1→T1 the

rate constant kobs is limited by

• the zero-point electronic motion (∼ 1015 – 1016 s-1)

• spin-orbit coupling between initial and final electronic states

• the square of vibrational overlap, i.e. the Frank-Condon factor 89 8: 2
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coupling
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coupling
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Franck-Condon 

factors



The classical harmonic oscillator

model for vibrational wavefunctions

"#$ �	 Ψ�	χ	S	 " Ψ�	χ	S
"#$ �	 	 '(') … '+ 	χ	S	 " 	 '(') … '+	 χ	S	

• To visualize 8 a first order approximation of the vibrational wavefunction we

often employ the classical harmonic oscillator model where the positive nuclei are

viewed as oscillating back and forth in the potential field of the electron cloud.

• Vibrational wave functions are critical for determining the probability of both

radiative and nonradiative transitions between different electronic states

(Franck-Condon principle)

• A classical harmonic oscillator is described by Hooke’s law

F = − k ∆r = − k r − re



F = − k ∆r = − k r − re

• The potential energy varies directly with the magnitude of the force constant (k)

and the square of the magnitude of displacement (∆r) from equilibrium (re)

PE =
(
) k ∆r2

• The classical harmonic oscillator is a good zero-order approximation of a vibrating

diatomic molecule.

• The frequency of oscillation ν (τ-1), with one period occurring in time (τ) is related

to the reduced mass (µ) of the displaced atoms

I =  ;
J

( )K
                      J =  L( +  L)

L(L)

( )K

� ν ∝ k

� ν ∝ µ-1

• C-H bonds (90-100 kcal mol-1) have a high frequency due to large k and small µ

• C-Cl bonds (60-80 kcal mol-1) have a low frequency due to small k and large µ



• Classical PE curves (parabolas) with quantized levels superimposed

• Strong bonds with a large k and small change in r results in a large change in PE

• In contrast, weak bonds with a small k show much smaller changes in potential energy 

upon similar displacement.

Compare C-C to C=C to C≡≡≡≡C

PE =
(
) k ∆r2

Note that PE
displacement is not
quantized in the
classical model
(independent of v)



The quantum harmonic oscillator

model for vibrational wavefunctions

"#$ �  N� χ S " N� χ S
"#$ =   '(') … '+  χ S "  '(') … '+ χ S 

• In the quantum model the vibrational wavefunction 8 describes the

instantaneous position and motion of the nuclei for a given electronic state (S0, S1,

T1 etc.) relative to its electron distribution.

"#$ =  N� H(H) … H+ S " N� H(H) … H+ S 
• Visualization of O can be conveniently achieved by beginning with a classical PE

curve, then imposing quantization of the energy levels, and finally describing the

appearance of the vibrational wave functions of the quantized energy levels.



• Solving the wave equation according to Hooke’s law reveals the quantization of

vibronic energy levels characterized by the vibrational quantum number v (0, 1, 2,

3,…)

PEv = hν (v + 0.5)

� PEv is now quantized with levels separated by units hν

� PEv=0 is non-zero (hν/2)

� Unstoppable zero-point energy (PE) and motion (KE) are essential features of every

quantum particle. Quantum particles are always in oscillation as a consequence of

the uncertainty principle (zero-point motion energy)

� At the turning points, the total energy of the oscillator is pure potential energy,

because the two masses have stopped vibrating in one direction and are starting to

vibrate back in the reverse direction.

� PEv and KEv vary continuously during the oscillation but total energy Ev is

constant.



Quantum mechanical description of a vibrating diatomic molecule.



• A closer inspection of sine-wave quantum mechanical solutions for the vibrational

wavefunction χ provides valuable insight that is essential in the interpretation of

both radiative and nonradiative electronic transitions.

� The number of nodal points for χv corresponds to the value of v while χv

changes phase as it passes through the energy-level line.

� Overlap of two χv wavefunctions can result in constructive interference or

destructive interference.

� This is akin to mixing of states, in other words resonance.

� According to (χv)
2 the electron density spends a majority time at the turning

points on the PE curve. χv wavefunctions approach the classical model at high

values of v, PE greatest at turning points

� Furthermore χv wavefunctions have a tendency to spread out in space beyond

the boundary of the classical PE curve – a phenomenon which gives rise to

tunnelling.



The Franck-Condon principle
The Franck-Condon principle

Because nuclei are much larger than electrons (∼1000:1) an electronic transition from

one orbital to another takes place instantaneously while the higher-inertia nuclei are

essentially stationary.

The Born-Oppenheimer approximation

Assumes that electron motion (∼ 10-15−10-16 s) is so much faster than nuclear motion

(∼ 10-13−10-14 s) that photoexcitation leads to electronic transitions across a fixed

molecular geometry

• For electronic transitions between states of the same spin, the rate constant kobs is

limited by resonance of both Ψi and Ψf .

;<=> � ;?#@� A Ψ6  "$6= ΨQ
ΔDQ�6
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• Accordingly conversion of electronic energy from the photoexcited transition state

(Franck-Condon state) to vibrational energy resulting in a thermally equilibrated

excited state (thexi state) is the rate limiting step between wavefunctions of

significantly different molecular geometries.



Franck-Condon factor and

transitions between electronic states

• A state energy diagram or Jablonski diagram displays the time-independent

energies for the electronic states of a molecule.

• We have already discussed one time-dependent transition in absorption of a

photon. Here we will focus on a time-dependent emissive decay from S1→S0 but

the same principles apply to any electronic transition.

• The rate constant (k) for a transition between two electronic states, e.g. emission

from S1→S0 (kfl), can be calculated from the square of the matrix element for kfl if

the operator " S( → S� and wavefunctions Ψ(S0) and Ψ(S1) are known

" S( → S� ∼  Ψ S( " S( → S� Ψ S�  S
• In this case the function of the mathematical operator " S( → S� is to calculate

the probability of “mixing” (aka resonance) of both wavefunctions Ψ(S0) and Ψ(S1)

which is required to trigger the transition between both electronic states.

• The mathematical form of the operator is derived from classical mechanics,

adapted for quantum mechanical models to include quantization (quantum

numbers) which provides the basis for spectroscopic selection rules.



• At room temperature, most molecules will be in the ν0 vibrational state of

the electronic ground state S0 (Boltzmann distribution)

• Each vibrational level has an associated wavefunction, the square of which

(χ2) relates to the most probable nuclear configuration.

�+
�� � 
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N0 = population of ν0 vibrational state

Nn = population of νn vibrational state 

∆E = E (νn) – E (ν0)

R = gas constant ( 8.314 J K-1 mol-1)

T = absolute temperature (K)
S

h S



• The Franck–Condon principle is the

approximation that an electronic

transition is most likely to occur without

changes in the positions of the nuclei in

the molecular entity and its

environment.

(re. Born-Oppenheimer approximation)

• The resulting state is called a Franck–

Condon state, and the transition

involved, a vertical transition.

• Transition intensities are proportional to

the square of the overlap integral

between the vibrational wavefunctions

of the two electronic states involved in

the transition.

� the Frank-Condon factor 89 8: 2
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What dictates the rate of radiative or nonradiative excited state decay?

Transitions are faster when there is minimum quantum mechanical reorganization of

wavefunctions. This reorganization energy includes the energy required to change both

electronic structure and nuclear geometry. i.e. the closer the resemblance of Ψ(S0) and

Ψ(S1) the larger the rate constant kfl and shorter the radiative lifetime 1τ

• In perturbation theory, weak perturbations are applied to distort the zero-order

wavefunction Ψ0 and give a more accurate estimate of the transition probability,

for example:

Ψ(S1) + " S( → S� →     Ψ(S1)  ± λ[Ψ(S0)]     →     Ψ(S0)

W � 	 XY-
0ZY[	\]	^
-Y_-`aYb\0
0
-Zc	\]	X
^a-aYb\0 � 	 Ψ S( " S( → S� Ψ S�
ΔD S( → S�

� Transition probability is dependent upon the resonance between states and the

transition energy

λ, resonance

mixing coefficient



• Rates of “fully allowed” transitions are limited only by the zero-point electronic

motion (∼ 1015 – 1016 s-1)

• If nuclear or spin configurations of S1 and S0 are not equal, mixing of Ψ(S0) and

Ψ(S1) is poor, and electron transition is rate-limited by the time needed for

vibrational and/or spin reorganization (e.g. molecular rigidity, phosphorescence)

• Vibrational and spin reorganization may act as bottlenecks in electronic transitions.

kobs = k0
max x ( fe fv fs ) 

kobs =    observed rate constant

k0
max =    zero-point motion limited rate-constant (∼ 1015 – 1016 s-1)

fe =    orbital configuration change factor (e.g. ∆E and # nodal planes)

fv =    vibrational configuration change factor

fs =    spin configuration change factor

• Fermi’s golden rule: ;<=> ∼  d Ψ S(  " S( → S� Ψ S�  S
where d represents the density of states capable of mixing Ψ(S0) and Ψ(S1) and

the matrix element corresponds to the transition dipole moment.



• For electronic transitions between states of the same spin, such as S1→S0 the rate

constant kobs is limited by the time it takes for

� the electronic wavefunction Ψ(S1) to distort so that it can mix with Ψ(S0)

� or for the vibrational wavefunction χ(S1) to distort so that it can mix with χ(S0)

• The most important perturbation for “mixing” electronic wavefunctions is

vibrational nuclear motion that is coupled to the electronic oscillation of the

transition dipole (vibronic coupling)

;<=> � ;?#@� A Ψ T(  "$6=  Ψ S�
ΔDE(�F�

)
×  HE( HF� )

• The matrix element here includes the vibrational operator Pvib that mixes Ψ(S1) and

Ψ(S0).

• Strong perturbation corresponds to a strong resonance between Ψ(S1) and Ψ(S0)

such that the rate limiting factor is dependent upon the square of vibrational

overlap, i.e. the Frank-Condon factor 89 8: 2

• The Frank-Condon factor 89 8: 2 is a measure of vibronic coupling between initial

and final states in an electronic transition.



• For electronic transitions between states of the different spin, such as T1→S0 the

rate constant kobs is further limited by spin-orbit coupling between between initial

and final electronic states, e.g. limited by the time it takes for

;<=> � ;?#@� A Ψ T( 	 "$6= 	Ψ S�
ΔDE(�F�

)
A Ψ T( 	 "FG 	Ψ S�

ΔDE(�F�
)
A	 HE( HF� )

Vibrational

coupling

Spin-orbit

coupling

Vibrational 

overlap

Franck-Condon 

factors



Transition probabilities

• A spin-allowed transition between two electronic states, e.g. absorption from

S0→S1 has a rate constant kfl determined by the equation

;<=> � ;?#@� A Ψ S�  "$6=  Ψ S(
ΔD(��

)
× H� H( )

What if the symmetry dictates that the matrix element �efg= 0 ?

• In this case the electronic transition is forbidden (…zero-order approximation)

• All allowed transitions have a finite value of "$6= > 0

…..we will discuss magnitude of "$6=and absorption coefficient ε shortly

• In the first order approximation perturbation of matrix elements "$6= and "FG
(vibronic and spin-orbit coupling) may overcame the zero-order forbidden

transition character.

• If the transition probability is still small (< 1%) the process is “weakly allowed” , i.e.

the transition rate kobs is too slow to compete with “strongly allowed” transitions



Vibronic coupling…summary

• How do vibrational wave functions χ influence the rate of radiative and

nonradiative spin-allowed transitions?

• The Franck-Condon factor <χ0χ1>2 is a measure of the similarity of the

vibrational wavefunctions for Ψ0 and Ψ1 and are critical in determining whether a

transition is allowed or forbidden.

;<=> ∼ H� H( )
• The Born-Oppenheimer approximation allows a zero-order approximation of

electronic structure & energy of an electronic state with a fixed nuclear

(nonvibrating) and spin configuration

Ψ ≅ Ψ0 χ S

To appreciate vibronic coupling and its influence on electronic transitions we must 

consider the effect of nuclear vibrational motion on the electronic structure & energy 

of a molecule and the perturbation it  provides allowing resonance of difference 

electronic state wavefunctions.



• Molecular vibrations are constantly active, opening the possibility of mixing

electronic states, should perturbation of the resonance mixing coefficient distort

the initial electronic wavefunction to resemble that of the final state

Ψ(S0)  ± λ[Ψ(S1)]

• The energy of a these weak vibronic perturbations D$6= are defined as

D$6= � h S�  "$6=  h S( )
ΔD��(

• Applying Fermi’s golden rule:

;<=> ∼  d h S�  "$6=  h S(  S
where d represents the density of states capable of mixing Ψ(S0) and Ψ(S1)

λ ∼ 1
ΔD

� Large band-gap → small resonance mixing coefficient ≡ a low density of states

� Small band-gap → high resonance mixing coefficient ≡ high density of states



D$6= = h "$6=  h )
ΔD

• Consider low band-gap organic chromophore, with and absorption maximum at λ
= 600 nm. This corresponds to ΔD��( = 48 kcal  mol-1

� C−H stretch ∼ 3000 cm-1 ; D$6= = 8.58 kcal mol-1

� C≡C stretch ∼ 2180 cm-1 ; D$6== 6.23 kcal mol-1

� C=O stretch ∼ 1700 cm-1 ; D$6== 4.86 kcal mol-1

� C=C stretch ∼ 1660 cm-1 ; D$6== 4.75 kcal mol-1

� C=N stretch ∼ 1650 cm-1 ; D$6== 4.72 kcal mol-1

Vibronic coupling between ground and excited states is very weak due to large ∆E 

however excited state energy gaps are much smaller and vibronic coupling becomes 

very important. C−H stretches are very effective in mixing electronically excited states

• Born-Oppenheimer approximation only works well for ground state molecules

where ground state vibrations do not mix with electronically excited states

effectively.



• Radiative and nonradiative electronic transitions depend upon the ability of

vibrations (distortion of the molecular geometry) to couple the initial electronic

wavefunction to vibrations of the final electronic wavefunction, particularly for

electronic excited states.

a) “weak vibronic coupling”

In-plane symmetric stretching

for an sp2 hybridized C atom

has no effect of the spatial

distribution of the p orbital.

This vibrational stretch is

decoupled from the electronic

wavefunction.

b) “strong vibronic coupling”

Asymmetric stretching causes

the atom to re-hybridize to

sp3 illustrating distortion of

the electronic wavefunction

for the molecule whose

energy will change (lower)

accordingly.



Classical harmonic oscillator model of

the Franck-Condon principle: radiative transitions

• Consider three different situations (a, b & c) for a heteronuclear diatomic molecule

with m1 >> m2 e.g. C−H



• The timescale for photoabsorption is on the order of ∼ 10-15 – 10-16 s such that the

geometry produced at the instance of the electronic transition to the upper surface

by a radiative transition, e.g. fro S0 to S1 , is governed by the relative positions of

the PE surfaces controlling the vibrational motion.

• Assuming both PE curves have similar shapes (i.e. identical bond order) the most

favored transitons are predicted to be

a) S0(v0) + hν → S1(v0)

• typical of extensively conjugated cyclic π systems, e.g. anthracene

b) S0(v0) + hν → S1(vn) n > 0

• typical of n→π∗ systems, e.g Ph2C=O

c) S0(v0) + hν → S1(vx) x > n

• typical conjugated acyclic π systems with vibrational freedom

• It follows that the original nuclear geometry of the ground state is a turning point

of the new vibrational motion in the excited state, and that vibrational energy is

stored by the molecule in the excited state.



• In a semi-classical model where we impose quantization on the classical harmonic

oscillator, radiative transitions from v = 0 are not initiated from a single geometry

but from a range of geometries that are explored during the zero-point motion of

the vibration.



• Expressed in quantum mechanical terms the Franck-Condon principle states that

the most probably transitions between electronic states occur when the wave

function of the initial vibrational state (χi) most closely resembles the wave function

of the final vibrational state (χf ).

• Mathematically we represent the vibrational wavefunction overlap integral as

<χ0χ1>

• Hence the term Franck-Condon factor

;<=> � ;?#@� A Ψ6 	 "$6= ΨQ
ΔDQ�6

)
A Ψ6 	 "FG ΨQ

ΔDQ�6
)
A	 H6 HQ )

• The Franck-Condon principle provides a useful visualization of both radiative and

noradiative transitions

Vibrational

coupling
Spin-orbit

coupling

Franck-Condon 

factor

Quantum mechanical harmonic oscillator model of

the Franck-Condon principle: radiative transitions



• The larger the FC factor <χ0χ1>2 the greater constructive overlap of vibrational

wavefunctions the smaller the nuclear reorganization the more probable the

electronic transition.

• The FC factor provides

a selection rule for

electronic transitions

and governs the

relative intensities of

radiative transitions

(absorption and

emission).

• For emissive processes

the critical overlap is

between the χ
corresponding to

S1(v0) and the various

vibrational levels (vn)

of So



• For a radiationless transition, the initial and “final” electronic states must have the

same energy and the same nuclear geometry.

• Typically a small amplitude vibration (usually v0) of a higher electronic state couples

vibronically with a higher amplitude vibrational state vn of a lower energy electronic

state.

• Subsequent equilibration of the vn state of the lower energy electronic state results

in dissipation of heat to the molecules local environment (solvent).

S1(v0) → [ S0(vn) ] → S0(v0) + heat

• Only at the crossing point of two wavefunctions does each state have the same

energy.

• For a radiationless transition, e.g. from S1 to S0 , energy and momentum must be

conserved.

Nonradiative transitions & the Franck-Condon principle



• A→C (or B→D) conserves energy but requires a change in geometry. A direct transition here

at points A and B will conserve geometry at the expense of an increase in amplitude of the

vibrational wavefunction

• A → E (or B→F) conserves geometry but requires a change in energy

• Such transitions with large reorganization energies have a negligible overlap integral of

vibrational wavefunctions <χ0χ1> and are implausible.

(a) Clasical model (b) Quantum mechanical model



• Radiationless transitions are most probable when two PE curves for a vibration

cross (or come very close to one another). In this scenario the energy, motion, and

phase of the nuclei are conserved during the transition.



• If there is a spin change associated with the horizontal transition the transition is

strictly forbidden in a zero-order approximation.

• Mixing of spin states requires a change in spin angular momentum.

• Total angular momentum must be conserved however so any change in spin

angular momentum is here associated with a change in orbital angular

momentum…this defines spin-orbit coupling.

• A first order approximation invokes spin-orbit coupling which enables resonance

between, e.g. singlet and triplet states, making intersystem crossing possible.



Oscillator strength ( f ): classical model

• f , absorption oscillator strength, is a measure for the integrated intensity of

electronic transitions. In classical terms; the ratio of light intensity absorbed by a

chromophore relative to an electron which behaves as a perfect harmonic oscillator

(f = 1).

• For f = 1, every photon of the appropriate frequency that interacts with the electron

will be absorbed.

• The oscillator strength f may be related to the molar absorption coefficient ε
assuming that the harmonic oscillating electronic excited state is unidimensional, i.e.

an oscillating dipole.

] = 4.3 × 10�m � � no̅
 

 
• The integral component corresponds to the area under the absorption curve on a plot

of molar absorptivity vs. wavenumber (ε vs. o̅). As ε is characteristic for each

frequency, line intensity is sufficient here without integration.

• Classical theory fails to explain the wide variation in oscillator strengths



• For an electronic transition to occur an oscillating dipole must be induced by

interaction of the molecules electric field with electromagnetic radiation.

• To understand the absorption coefficient a knowledge of dipole moments is required.

• In fact both ε and k0 can be related to the transition dipole moment (µµµµge)

• If two equal and opposite electrical charges (e) are separated by a vectorial distance

(r), a dipole moment (µµµµ ) of magnitude equal to er is created.

µµµµ = = = = e r (e = electron charge,

r = extent of charge displacement)

• The magnitude of charge separation, as the electron density is redistributed in an

electronically excited state, is determined by the polarizability of the electron cloud

(αααα) which is defined by the transition dipole moment (µµµµge)

α = α = α = α = µµµµge / E (E = electrical force)

µµµµge = = = = e r

Oscillator strength ( f ): quantum mechanical model



• The magnitude of the oscillator strength ( f ) for an electronic transition is

proportional to the square of the transition dipole moment produced by the action of

electromagnetic radiation on an electric dipole.

f ∝ µµµµge
2 = (e r)2

• The dipole strength of an electronic transition is equal to er which can be viewed as

the average size of the transition dipole moment where r is the dipole vector length.

• Combining the classical oscillator strength with the quantization of the oscillation of

electrons we have an expression relating f and µµµµge

] � 8 2 Lr I̅
3 ℎ 
)  str)  ≅  10�v I̅ 
wtr  )

• This equation may be rewritten to express f in terms of the matrix element of initial

and final electronic state wave functions which are responsible for the transition

dipole moment

] = 8 2 Lr I̅
3 ℎ 
) Ψ( � Ψ)  )


