Photophysical requirements for absorption/emission

 For any photophysical process the following conservation laws must be
followed:

» conservation of energy (E =hv ; AE=0)

» conservation of angular momentum (Al = 0)

Electronic transitions must generate (abs) or destroy (emission) a
node.

» finite interaction rule

the transition dipole moment (4,.) which determines the magnitude
of light absorption must be finite.

» frequency matching (resonance) rule (v = E / h)

there must be a matching of frequency (v) of the oscillating light
wave and a frequency that corresponds to the formation of a
transition dipole moment.



Physical basis for light absorption

When a photon, i.e. an oscillating electromagnetic field, encounters a
chromophore possessing quantized electronic states it may be absorbed
and its energy transferred to an electron to partake in an electronic
transition.
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Classical description for light absorption
(harmonic oscillator model)

In the classical model the photon is considered an oscillating electromagnetic
field.

An excited state is considered as a harmonic oscillator, in essence an oscillating
electronic dipole, e.g. HOMO-LUMO

When both oscillations share the same frequency they are said to be in resonance
with each other — one criteria for photon absorption.
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When resonance is met and an electronic transition occurs the photon energy is
guantitatively absorbed.

Perturbed electron density of the chromophore oscillates between both electronic
states involved with a frequency of v (barring some thermal loss) causing a change
in the molecule’s dipole moment (Au = i, - i)

Photoexcited states are dynamic electronic states!

It is the frequency of oscillation of the transition dipole moment (4,.) that is in
resonance with the incident electromagnetic radiation. Classically described as a
vibrating harmonic oscillator.

The transition dipole moment (/) lasts only for the duration of the electronic
transition and arises because of the process of electron displacement during the
transition.

The molar extinction coefficient (€) is proportional to the square of the transition
dipole moment.
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Physical basis for light absorption — Quantum model

 Considering again the H atom we now use the 1s wavefunction in our model which
has R; symmetry and hence no net dipole when unperturbed.

* An electromagnetic wave may provide energy, providing it meets the resonance
criteria, for the wavefunction to distort from its equilibrium position such that the
electron density oscillates beyond its equilibrium position.

 This 1s oscillation corresponds to “attractive and repulsive forces”, according to the
phase of the light wave, generating an appearance similar to that of a p orbital.
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* In other words, upon absorption of a photon the angular momentum of the
wavefunction changes from/=0to /= 1.

» It is important to note that a photon possesses one unit of spin angular momentum.

e Thus, this example shows how electronic excitation obeys two important
requirements for a photochemical process:

1) The conservation of energy (AE = 0)

2) The conservation of angular momentum(Al = 0)



Quantum model for the H—H molecule

H, is cylindrically symmetrical
(D..;,) which gives rise to axially
parallel and  perpendicular
electronic excited state
oscillations.

This gives rise to ¢* and =«
orbitals each having one extra
node, Al = +1.

The o > o* electronic transition
is  perpendicular to the
molecular axis.

The ¢ - T electronic transition
is parallel to the molecular axis.
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Production of a single node in the wavefunction corresponds to the change of
angular momentum (Al = +1) by a single unit z ( = h/2n)

The magnitude of charge separation, as the electron density is redistributed in an
electronically excited state, is determined by the polarizability of the electron
cloud (o) which is defined by the transition dipole moment ()

o=,/ E (E = electrical force)

U,.=er (e=electron charge,
r = extent of charge displacement)

LUMO

fg = 5.95 D HOMO




Absorption of polarized light

The previous description allows us to introduce the selective absorption of
polarized light by a chromophore.

Upon photon absorption by the 1s wavefunction of the H atom the electron cloud
oscillates in the same plane as the electromagnetic wave (also producing the

nodal plane of a 2p orbital at 90° to this plane).

The 1s wavefunction can be excited along any one of the three Cartesian axes
producing one of three possible 2p orbitals (m, =-1, 0, +1).

Polarization of Light Waves
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Absorption coefficient (o)

* Typically used for solid and gas phase samples

[=1je *!
o = absorption coefficient

T — | _ _al Iy = light intensity before incident on sample
- I =€ | = light intensity after passing through sample
A = absorbance
a=No T = transmission

¢ = concentration (M)
[ = path length (cm)
T=e Nt N = atomic number density
o = optical cross section (o / N)



Transmission of light by a dilute solution
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T = transmission

I, = light intensity before incident on sample

I = light intensity after passing through sample
¢ = concentration (M)

[ = path length (cm)

o = absorption coefficient (constant)

£ = molar extinction coefficient (L mol' cm)



Beer-Lambert law

|
A=—logT = —log<l—>
0

1 I
A=log|=|=1log (—O) = log (10%¢ 1)
T I
A=c¢cl

A = absorbance (aka opfical density or 0.d.)

T = transmission

I, = light intensity before incident on sample

I = light intensity after passing through sample
¢ = concentration (M)

[ = path length (cm)

£ = molar extinction coefficient (L mol' cm)



Beer-Lambert law
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Eigenfunctions, eigenstates & eigenvalues

e Using the Schrodinger wave equation quantum mechanics provides an
understanding of molecular structure, molecular energetics, and molecular dynamics
based on computations that “operate” mathematically on the wavefunction ¥

HY=EY

If the mathematical form of W is known precisely for a given molecule it is possible not
only to compute the electronic, nuclear, and spin configurations of a molecule but also to
compute the average value of any experimental observable property (electronic energy,
dipole moment, nuclear geometry, electron spin energies, probabilities for transitions
between electronic states, etc.) of any state of the molecule for an assumed set of initial
conditions and interactions provided by internal and external forces.

 In other words, for every measurable property of a molecular system there is a
mathematical function H that operates on the wavefunction ¥ to produce an
eigenvalue E that corresponds to an experimental measurement of that property of
the system.



The Schrodinger wave equation tells us that energy is quantized in discrete states,
known as eigenstates ; eigen (deutsch) = proper

Each of these states corresponds to a specific wave function ¥ with a specific energy E

The wavefunctions are called eigenfunctions and their corresponding energies are
called eigenvalues of the operator H

A complete eigenfunction W represents the entire molecular structure (electronic,
vibrational and spin)

Therefore by choosing an appropriate Hamiltonian operator H the following
eigenvalues may be determined

» electronic, vibrational, spin structures and energies
electronic density distributions
probability of light absorption and light emission

rates of photophysical transitions

v VWV VvV 'V

role of electron spin in determining excited state properties



The mathematical operator or Hamiltonian H is related to the forces or interactions
that determine the measurable properties of a system e.g., energy, dipole moment,
angular momentum, transition probability etc.

While quantum mechanics can predict discrete eigenvalue solutions E in reality, as
experimentalists, we observe average eigenvalue distributions E, for large numbers of
molecules.....known as the expectation value.

Expectation values for a molecular system are extracted from a wavefunction by
applying the Hamiltonian operator and then computing what is know as the matrix
element

» The matrix element involves “normalization” of the component wavefunctions and

integrating resultant values to give an approximate solution to the wave equation.

P, = jtpptp = (Y|P|W)

(. —
expectation matrix
value element

The expectation value of any observable molecular property of interest P (eigenstate,
dipole moment, transition probability etc.) can be evaluated in terms of the matrix
element.



Born-Oppenheimer approximation

Y=Y + \Pvibrational +

electronic rotational

The Born-Oppenheimer Approximation is the assumption that electronic,
vibrational and rotational wavefunctions can be treated independently.

This assumption is based upon the following premise

E >> Evibrational >> E

electronic rotational

This approximation greatly simplifies solution of the Schrodinger wave equation as
it allows an approximate wavefunction W, to be independently solved determining
approximate eigenvalues (potential energy) for any selected static nuclear
framework (%, , kinetic energy = 0) and specified spin configuration (S)

Y=W xS

This approximation breaks down in the presence of significant vibronic coupling or
spin-orbit coupling.



Qualitative characteristics of wavefunctions (revision)

* Only the square of the wavefunction is subject to direct experimental observation
(P2, x2 or S?)

« W2, x?and S?relate to the probability of finding the electrons, nuclei, and spins,
respectively, at particular points in space in a molecular structure thus providing a
means of pictorially representing electron density, nuclear geometry and spin.

* Y,,x andS are subject to symmetry considerations which provide a basis for
selection rules governing transitions between states.

 Wavefunctions of similar energies may “mix”, i.e. be in resonance with each
other. Wavefunctions having identical energies are termed degenerate.

 Having a knowledge of
(i) various state electronic, nuclear and spin configurations
(ii) a qualitative ranking of their corresponding energies

enables a state energy level (aka Jablsonki) diagram to be readily constructed.



Expectation values and matrix elements

Pav=j¢P¢= WIPIY)
S

—
expectation matrix
value element

» The matrix element <¥ |P | V¥ > is the quantum mechanical representation of the
energy of an observable property P of a molecular system.

To avoid calculating the matrix element we visualize its components using constructs
of classical mechanics to then deduce qualitative conclusions.

Ppy = (Wox SIP|WoxS)

Ppy = ((P102 ... ) X S |P| (P12 ... Py )X S)

* In the zero-order approximation ¥, is calculated as a product of one-electron
molecular orbital wavefunctions ¢, for a one-electron molecule.

* The first-order approximation introduces electron-electron interactions by mixing
wavefunctions to approximate E with more accuracy......perturbation theory!



Atomic orbitals, Molecular orbitals, electronic states
and configurations, e.g. formaldehyde
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energy

Characteristic spin Shorthand

State Charac_teristic electronic description of
orbitals : :
configuration

| S m, (m ' () (" ])’ (., )

Ts T, (M (n)* (n* 1) (T, )

S¥ n,m (M) (n M (7* |)’ '(n, )

T, n, (m)?* (n P! (" 1)’ (n, )

S, T,n ()% (n)? (1")° '[(m)* (n)*]

 Each electronic state may be described in terms of a characteristic electronic
configuration , which in turn may be described in terms of the HOMO and LUMO
and in terms of a characteristic spin configuration, either singlet or triplet.



Electron correlation and exchange energy

Aufbau principle
Orbitals of lower energy are filled first and only then orbitals of higher energy are
filled.

Madelung rule
Orbitals fill up on the order of the quantum number sum ‘n + I’

Pauli exclusion principle
No two electrons can have the same four quantum numbers, i.e. if n, [, and m, are the
same, m, must be different such that the electrons have opposite spins

Hunds rule of maximum multiplicity
For a given electron configuration, the maximum multiplicity term (2S + 1) has lower
energy

* The Pauli exclusion principle and Hund’s rules of maximum multiplicity dictate that
the term with maximum multiplicity (2S + 1) has the lowest energy due reduced
electron-electron repulsion.

T <S always applies for the same electronic configuration !!!

n n

* Inthe zero-order approximation of W(S,) electron-electron repulsions are
ignored.



In the first-order approximation of W(S,) electron-electron repulsions are taken
into account.

Applying the Born-Oppenheimer approximation the nuclear geometry is fixed and
attractive forces between the negatively charged electrons and the positively
charged nuclei contribute a constant stabilization energy.

The differences in energy between different states in this approximation are due
entirely to electron-electron repulsions where the classical form of H is

The magnitude of electron-electron repulsion may be computed by integrating
repulsive interactions (matrix element) over the entire molecular volume (assuming
a fixed nuclear configuration)

1. Coulombic integral (K) - electron repulsions due to electrostatic interactions

2. Electron exchange energy (J) — a first-order guantum mechanical correction to
K required by symmetry properties of Pauli’s exclusion principle.



The matrix element aka electron exchange integral (J) has the form

:

The electron exchange integral (> 0) is a purely guantum mechanical phenomenon
since it amounts to a quantum mechanical correction to the classical electronic
distribution (Pauli)

62

T12

]2<Lp1

The electron exchange integral does note take into account the influence of
electron spin angular momentum on electron-electron repulsion — only symmetry.

Taking again H,C=0 as an example, and restricting the calculation to the active
MOs in the lowest energy transition:

Eq=E,(n, ) + K (n, ®) + J(n, T*)

Er=E,(n, ) + K(n, ) — J(n, T)
l_'_l L Y J \ Y I}
zero-order first-order  first-order

(classical) (quantum m)

Electron exchange energy = Eq—E; = AEy = 2J



Singlet-triplet splitting in H,C=0

e Estimation of AE¢ for S,/T, and S,/T, in H,C=0 requires qualitative evaluation of
the magnitude of the electron exchange integrals for J(n, ©*) and J(T, T*)

2
J(nm*) = <n(1),n*<2)\f1—2 n<2),n*<1)>

Jn, ") ~ (n(1), 7" (2)[n(2), 7" (1)) ~ (n|n7)

* The orbital overlap integral {n | m*) may be visualized as a measure of the mutual
resemblance of the two wave functions (aka mixing/resonance).

* |If both wavefunctions are identical their normalized orbital overlap integral is unity,
eg(m|m)=1

* |If both wavefunctions are orthogonal the orbital overlap integral is zero.
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 When the orbital overlap integral (qbl- |¢j ) =0, so does the electron exchange
integral such that J=0, E;= E; and AEq; =0

Egr=E,(n, ) + K (n, ) * J(n, T)
Jn, ") ~ (n| ")
* This is contradictory to our rule:

T <S

<8, always for the same electronic configuration !!!

What does this mean for ‘H(n, 7*) in H,C=0 ?

* We have effectively just derived a selection rule for singlet triplet energies of (n, T*)
excited states

e In contrast the value for J(m, ®*) is finite and large.
* We can effectively conclude that AE¢; (n, T*) < AE; (T, T*) in general because the

overlap of a w with a ® * orbital will usually be greater than the overlap of anand a
T * orbital.
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For electronic transitions between states of the different spin, such as S;->T, the
rate constant k_, _is limited by

the zero-point electronic motion (~ 10> — 1016 s-1)
spin-orbit coupling between initial and final electronic states

the square of vibrational overlap, i.e. the Frank-Condon factor {}1|x¢)>

2 2
(P(Ty) IPvibl‘P(So))] o (W(Ty) [Psol W(So)) % (reslrse)?

— 1,0
kobs - kmax X AET S
1-S0

AET1-s0
l v J \ Y ) \_'_l
Vibrational
Vibrational Spin-orbit overlap
coupling coupling Franck-Condon

factors



The classical harmonic oscillator
model for vibrational wavefunctions

Poy = (LPOXS |P|LP0XS>

Pav = ( (¢1¢2 d)n) X S |P| (¢1¢2 ¢n )X S)

To visualize y a first order approximation of the vibrational wavefunction we
often employ the classical harmonic oscillator model where the positive nuclei are
viewed as oscillating back and forth in the potential field of the electron cloud.

Vibrational wave functions are critical for determining the probability of both
radiative and nonradiative transitions between different electronic states
(Franck-Condon principle)

A classical harmonic oscillator is described by Hooke’s law

F=—-kAr=—-k |r—re|



F=—-kAr=—-k |r—re|

The potential energy varies directly with the magnitude of the force constant (k)
and the square of the magnitude of displacement (Ar) from equilibrium (r,)

PEz%kAﬂ

The classical harmonic oscillator is a good zero-order approximation of a vibrating
diatomic molecule.

The frequency of oscillation v (t!), with one period occurring in time (1) is related
to the reduced mass () of the displaced atoms

1 1
<k> /2 <m1 + m2> /2
vV = — ,Ll =
U mimg;
" Vo k

n Vocllfl

* C-H bonds (90-100 kcal molt) have a high frequency due to large k and small u

* C-Cl bonds (60-80 kcal mol!) have a low frequency due to small k and large i



PEzzlkAr2 PE

Note that PE
displacement is not
quantized in the
classical model
(independent of v)
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Classical PE curves (parabolas) with quantized levels superimposed
Strong bonds with a large k and small change in r results in a large change in PE
In contrast, weak bonds with a small K show much smaller changes in potential energy

upon similar displacement.

Compare C-C to C=C to C=C



The quantum harmonic oscillator
model for vibrational wavefunctions

Py = (‘POXS |P|11UOXS>

Pav = ( (¢1¢2 ¢n) X S |P| (¢1¢2 ¢n )X S)

In the quantum model the vibrational wavefunction y describes the
instantaneous position and motion of the nuclei for a given electronic state (S,, S,,
T, etc.) relative to its electron distribution.

Poy = (Wo (X1x2 - Xn)S IPI¥o (12 - Xn)S)

Visualization of ) can be conveniently achieved by beginning with a classical PE
curve, then imposing quantization of the energy levels, and finally describing the
appearance of the vibrational wave functions of the quantized energy levels.



Solving the wave equation according to Hooke’s law reveals the quantization of
vibronic energy levels characterized by the vibrational quantum number v (0, 1, 2,
3,...)

PE,=hv (v +0.5)
PE is now quantized with levels separated by units hv
PE,_, is non-zero (hv/2)

Unstoppable zero-point energy (PE) and motion (KE) are essential features of every
guantum particle. Quantum particles are always in oscillation as a consequence of
the uncertainty principle (zero-point motion energy)

At the turning points, the total energy of the oscillator is pure potential energy,
because the two masses have stopped vibrating in one direction and are starting to
vibrate back in the reverse direction.

PE, and KE, vary continuously during the oscillation but total energy E, is
constant.
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Quantum mechanical description of a vibrating diatomic molecule.



* A closer inspection of sine-wave quantum mechanical solutions for the vibrational
wavefunction x provides valuable insight that is essential in the interpretation of
both radiative and nonradiative electronic transitions.

» The number of nodal points for x, corresponds to the value of v while ¥,
changes phase as it passes through the energy-level line.

» Overlap of two x, wavefunctions can result in constructive interference or
destructive interference.

» This is akin to mixing of states, in other words resonance.

» According to (),)? the electron density spends a majority time at the turning
points on the PE curve. x, wavefunctions approach the classical model at high
values of v, PE greatest at turning points

» Furthermore yx, wavefunctions have a tendency to spread out in space beyond
the boundary of the classical PE curve — a phenomenon which gives rise to
tunnelling.



The Franck-Condon principle

The Franck-Condon principle

Because nuclei are much larger than electrons (~1000:1) an electronic transition from
one orbital to another takes place instantaneously while the higher-inertia nuclei are
essentially stationary.

The Born-Oppenheimer approximation

Assumes that electron motion (~ 10%°—101 s) is so much faster than nuclear motion
(~ 1013-101* s) that photoexcitation leads to electronic transitions across a fixed
molecular geometry

* For electronic transitions between states of the same spin, the rate constant k_, is
limited by resonance of both ¥, and ;.

2

W AP, [P
( ll mbl f) v (Xil)(f)z

AEf_;

kops = k‘?nax X [

* Accordingly conversion of electronic energy from the photoexcited transition state
(Franck-Condon state) to vibrational energy resulting in a thermally equilibrated
excited state (thexi state) is the rate limiting step between wavefunctions of
significantly different molecular geometries.



Franck-Condon factor and
transitions between electronic states

A state energy diagram or Jablonski diagram displays the time-independent
energies for the electronic states of a molecule.

We have already discussed one time-dependent transition in absorption of a
photon. Here we will focus on a time-dependent emissive decay from S;->S5, but
the same principles apply to any electronic transition.

The rate constant (k) for a transition between two electronic states, e.g. emission
from S;>S, (k;), can be calculated from the square of the matrix element for k; if
the operator P(S; = Sy) and wavefunctions W¥(S,) and ¥(S,) are known

P(S; = Sp) ~ (W(S1)IP(S1 = Sp)I¥(Sp)) 2

In this case the function of the mathematical operator P(S; = Sg) is to calculate
the probability of “mixing” (aka resonance) of both wavefunctions ¥(S,) and ‘¥(S,)
which is required to trigger the transition between both electronic states.

The mathematical form of the operator is derived from classical mechanics,
adapted for quantum mechanical models to include quantization (quantum
numbers) which provides the basis for spectroscopic selection rules.



At room temperature, most molecules will be in the v, vibrational state of
the electronic ground state S, (Boltzmann distribution)

Each vibrational level has an associated wavefunction, the square of which
(x?) relates to the most probable nuclear configuration.

A \ ]
\ { Vn
\ |
\\ II
A V3 N —AE
\\“ // V2 N e( / RT)
= \/ / Vi N
£ \, Vo 0
% hy Sq \\/
Tg \ ] N, = population of v, vibrational state
Q \ 7 Vn . . .
E \\ I/ N,, = population of v, vibrational state
\ 1 vs AE=E(v,)—E(V,)
V2
\\ /V1 R = gas constant ( 8.314 J KX mol?)
So _ Vo T = absolute temperature (K)



The Franck—Condon principle is the
approximation that an electronic
transition is most likely to occur without
changes in the positions of the nuclei in
the  molecular entity and its
environment.

(re. Born-Oppenheimer approximation)

The resulting state is called a Franck-
Condon state, and the transition
involved, a vertical transition.

Transition intensities are proportional to
the square of the overlap integral
between the vibrational wavefunctions
of the two electronic states involved in
the transition.

> the Frank-Condon factor {x1|xo)?

Potential energy

\
\ 7
\ |
\ ]
\ /
FCstate .\ /
\n / V3
\.vr /] V2
thexi state ... |\: \g!
3 vo
hv S1
\ _—
\ { Vn
\ ]
\ /
\ /




The Franck—Condon principle is the
approximation that an electronic
transition is most likely to occur without
changes in the positions of the nuclei in
the  molecular entity and its
environment.

(re. Born-Oppenheimer approximation)

The resulting state is called a Franck-
Condon state, and the transition
involved, a vertical transition.

Transition intensities are proportional to
the square of the overlap integral
between the vibrational wavefunctions
of the two electronic states involved in
the transition.

> the Frank-Condon factor {)1|xo)?
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What dictates the rate of radiative or nonradiative excited state decay?

-

~N

Transitions are faster when there is minimum quantum mechanical reorganization of
wavefunctions. This reorganization energy includes the energy required to change both
electronic structure and nuclear geometry. i.e. the closer the resemblance of W(S,) and
W(S,) the larger the rate constant ky and shorter the radiative lifetime ' T

J

* In perturbation theory, weak perturbations are applied to distort the zero-order
wavefunction ¥, and give a more accurate estimate of the transition probability,
for example:

P(S)+P(S1—=Sp) > WS £ A[F(S,)] > W(S)

I
A, resonance

mixing coefficient

strength of perturbation  (W(S1)|P(S1 = So)[¥(So))
energy of separation AE(S; = Sp)

» Transition probability is dependent upon the resonance between states and the
transition energy



 Rates of “fully allowed” transitions are limited only by the zero-point electronic
motion (~ 10> — 1016 s-1)

* If nuclear or spin configurations of S; and S, are not equal, mixing of W¥(S,) and
Y(S,) is poor, and electron transition is rate-limited by the time needed for
vibrational and/or spin reorganization (e.g. molecular rigidity, phosphorescence)

* Vibrational and spin reorganization may act as bottlenecks in electronic transitions.

kobs = komax X (fe fvfs )
k.., = observed rate constant
k° .. = zero-point motion limited rate-constant (~ 101> — 106 s
/e = orbital configuration change factor (e.g. AE and # nodal planes)
1, = vibrational configuration change factor
1 = spin configuration change factor
* Fermi’s golden rule: kops ~ p{W(S1) |P(S1 = So)|W(Sy)) 2

where p represents the density of states capable of mixing ¥(S,) and ¥(S,) and
the matrix element corresponds to the transition dipole moment.



For electronic transitions between states of the same spin, such as S;->S, the rate
constant k, . is limited by the time it takes for

= the electronic wavefunction ¥(S,) to distort so that it can mix with ‘P(S)
= or for the vibrational wavefunction ¥/(S,) to distort so that it can mix with x(S,)

The most important perturbation for “mixing” electronic wavefunctions is
vibrational nuclear motion that is coupled to the electronic oscillation of the
transition dipole (vibronic coupling)

(W(Ty) 1Py P(So))]
kobs — kglax X = X (XTllXSO)Z
AET1-s0

The matrix element here includes the vibrational operator P, that mixes ‘¥(S,) and
W(S,).

Strong perturbation corresponds to a strong resonance between ¥(S;) and ‘¥(S,)
such that the rate limiting factor is dependent upon the square of vibrational
overlap, i.e. the Frank-Condon factor {x1|xo)?

The Frank-Condon factor {x1|xo)? is a measure of vibronic coupling between initial
and final states in an electronic transition.



For electronic transitions between states of the different spin, such as T,>S, the
rate constant k. is further limited by spin-orbit coupling between between initial
and final electronic states, e.g. limited by the time it takes for

X (xr1lxso)”

(P(Ty) [Pyip LP(So))r o |{F (T [Psol ¥(So) i

kops = kg X
obs — Tmax AET1-50 AET1-s9
| ' : L ' : S—
Vibrational
Vibrational Spin-orbit overlap
coupling coupling Franck-Condon

factors



Transition probabilities

A spin-allowed transition between two electronic states, e.g. absorption from
So—>95; has a rate constant k; determined by the equation

(W(So) |Pyin| P(S)H]*
kops = kglax X . — ! X (Xol)(l)z
AE;_g

What if the symmetry dictates that the matrix element P,;,= 0 ?

In this case the electronic transition is forbidden (...zero-order approximation)

All allowed transitions have a finite value of P,;, >0
..... we will discuss magnitude of P,;,and absorption coefficient £ shortly

In the first order approximation perturbation of matrix elements P,;, and Pgqg
(vibronic and spin-orbit coupling) may overcame the zero-order forbidden
transition character.

If the transition probability is still small (< 1%) the process is “weakly allowed” , i.e.
the transition rate k, is too slow to compete with “strongly allowed” transitions



Vibronic coupling...summary

* How do vibrational wave functions % influence the rate of radiative and
nonradiative spin-allowed transitions?

* The Franck-Condon factor <y, | X;>> is a measure of the similarity of the
vibrational wavefunctions for W, and ¥, and are critical in determining whether a
transition is allowed or forbidden.

kobs ~ {Xo |X1>2

« The Born-Oppenheimer approximation allows a zero-order approximation of
electronic structure & energy of an electronic state with a fixed nuclear
(nonvibrating) and spin configuration

Y=W,xS

(

To appreciate vibronic coupling and its influence on electronic transitions we must h
consider the effect of nuclear vibrational motion on the electronic structure & energy
of a molecule and the perturbation it provides allowing resonance of difference
electronic state wavefunctions. y

\




Molecular vibrations are constantly active, opening the possibility of mixing
electronic states, should perturbation of the resonance mixing coefficient distort

the initial electronic wavefunction to resemble that of the final state
¥(Sy) + A['P(S))]
* The energy of a these weak vibronic perturbations E,,;;, are defined as

o 00 Puin| (51
vib — AE0—1

 Applying Fermi’s golden rule:
kobs ~ p<7~/}(SO) |Pvib| l/J(Sl)) 2

where p represents the density of states capable of mixing ¥(S,) and ‘¥(S,)

A 1
AE

» Large band-gap = small resonance mixing coefficient = a low density of states

» Small band-gap = high resonance mixing coefficient = high density of states



Pvi 2
Fop = 1P ¥

Consider low band-gap organic chromophore, with and absorption maximum at A
=600 nm. This corresponds to AE,_; = 48 kcal mol

» C—H stretch ~ 3000 cm™; E,;;, = 8.58 kcal mol*
» C=C stretch ~ 2180 cm™; E,;,= 6.23 kcal mol!
» C=0 stretch ~ 1700 cm™ ; E,,;;,= 4.86 kcal mol*
» C=C stretch ~ 1660 cm™; E,;,= 4.75 kcal mol!

» C=N stretch ~ 1650 cm™; E,;;,= 4.72 kcal mol?

.

Vibronic coupling between ground and excited states is very weak due to large AE
however excited state energy gaps are much smaller and vibronic coupling becomes

very important. C—H stretches are very effective in mixing electronically excited states

y,

Born-Oppenheimer approximation only works well for ground state molecules
where ground state vibrations do not mix with electronically excited states
effectively.



a)

b)

Radiative and nonradiative electronic transitions depend upon the ability of
vibrations (distortion of the molecular geometry) to couple the initial electronic
wavefunction to vibrations of the final electronic wavefunction, particularly for

electronic excited states.

“weak vibronic coupling”
In-plane symmetric stretching
for an sp? hybridized C atom
has no effect of the spatial
distribution of the p orbital.
This vibrational stretch s
decoupled from the electronic
wavefunction.

“strong vibronic coupling”
Asymmetric stretching causes
the atom to re-hybridize to
sp3® illustrating distortion of
the electronic wavefunction
for the molecule whose
energy will change (lower)
accordingly.

//,"

Planar

All angles 120°

Two atoms move
down, plane destroyed

Still pure p

Vibronic interaction
has a small effect

W
o
\\

Vibronic interaction
significant



Classical harmonic oscillator model of
the Franck-Condon principle: radiative transitions

* Consider three different situations (a, b & c) for a heteronuclear diatomic molecule
with m; >>m, e.g. C-H

(@) (b) (c)




The timescale for photoabsorption is on the order of ~ 10> — 1016 s such that the
geometry produced at the instance of the electronic transition to the upper surface
by a radiative transition, e.g. fro S; to S,, is governed by the relative positions of
the PE surfaces controlling the vibrational motion.

Assuming both PE curves have similar shapes (i.e. identical bond order) the most
favored transitons are predicted to be

a) Sy(vg) + hv = S;(vy)

* typical of extensively conjugated cyclic T systems, e.g. anthracene
b) So(vg) +hv > S,(v,) n>0

e typical of n>m* systems, e.g Ph,C=0
c) So(vg) + hv > Si(v,) x>n

* typical conjugated acyclic @ systems with vibrational freedom

It follows that the original nuclear geometry of the ground state is a turning point
of the new vibrational motion in the excited state, and that vibrational energy is
stored by the molecule in the excited state.



* |n a semi-classical model where we impose quantization on the classical harmonic
oscillator, radiative transitions from v = 0 are not initiated from a single geometry
but from a range of geometries that are explored during the zero-point motion of

the vibration.

k.
v

w—slgg——



Quantum mechanical harmonic oscillator model of
the Franck-Condon principle: radiative transitions

* Expressed in guantum mechanical terms the Franck-Condon principle states that
the most probably transitions between electronic states occur when the wave
function of the initial vibrational state () most closely resembles the wave function
of the final vibrational state ().

 Mathematically we represent the vibrational wavefunction overlap integral as
<Xo | X1~

* Hence the term Franck-Condon factor

2

2
(Wi [Poin|Wr) (Wi [Pso|¥y) 2
koo.o=kO  x|— X x (y:
obs max AEf—i AEf—i <Xl |Xf>
L ' ] \ ' l —
Vibrational Spin-orbit  Franck-Condon
coupling coupling factor

 The Franck-Condon principle provides a useful visualization of both radiative and
noradiative transitions



* The larger the FC factor <y, | X>> the greater constructive overlap of vibrational
wavefunctions the smaller the nuclear reorganization the more probable the
electronic transition.

v=4—->0
N :
Absorption
v=0 *\0 spectrum
* The FC factor provides A

a selection rule for
electronic transitions
and governs the
relative intensities of
radiative transitions
(absorption and
emission).

* For emissive processes
the critical overlap is
between the X
corresponding to
S,(vo) and the various
vibrational levels (v,)
of S,

Energy

Very weak absorption
Weak absorption
Moderate absorption
Strong absorption




Nonradiative transitions & the Franck-Condon principle

* For a radiationless transition, the initial and “final” electronic states must have the
same energy and the same nuclear geometry.

* Typically a small amplitude vibration (usually v,) of a higher electronic state couples
vibronically with a higher amplitude vibrational state v, of a lower energy electronic
state.

* Subsequent equilibration of the v _state of the lower energy electronic state results
in dissipation of heat to the molecules local environment (solvent).

S1(vg) 2 [ Sp(v,) 1 = So(vp) + heat

* Only at the crossing point of two wavefunctions does each state have the same
energy.

e For a radiationless transition, e.g. from S, to S, , energy and momentum must be
conserved.



LU —= D LU

HO = —o HO —2=
<>
Orbital Vibrational Orbital Vibrational
occupancy motion occupancy motion
(a) Clasical model (b) Quantum mechanical model

A->C (or B->D) conserves energy but requires a change in geometry. A direct transition here
at points A and B will conserve geometry at the expense of an increase in amplitude of the
vibrational wavefunction

A = E (or B>F) conserves geometry but requires a change in energy

Such transitions with large reorganization energies have a negligible overlap integral of
vibrational wavefunctions <y, | %> and are implausible.



Radiationless transitions are most probable when two PE curves for a vibration
cross (or come very close to one another). In this scenario the energy, motion, and
phase of the nuclei are conserved during the transition.

Poor net positive Good net positive
overlap overlap




If there is a spin change associated with the horizontal transition the transition is
strictly forbidden in a zero-order approximation.

Mixing of spin states requires a change in spin angular momentum.

Total angular momentum must be conserved however so any change in spin
angular momentum is here associated with a change in orbital angular
momentum...this defines spin-orbit coupling.

A first order approximation invokes spin-orbit coupling which enables resonance
between, e.g. singlet and triplet states, making intersystem crossing possible.



Oscillator strength ( f): classical model

f , absorption oscillator strength, is a measure for the integrated intensity of
electronic transitions. In classical terms; the ratio of light intensity absorbed by a
chromophore relative to an electron which behaves as a perfect harmonic oscillator

(f=1).

For f= 1, every photon of the appropriate frequency that interacts with the electron
will be absorbed.

The oscillator strength f may be related to the molar absorption coefficient €
assuming that the harmonic oscillating electronic excited state is unidimensional, i.e.
an oscillating dipole.

f=43 x 10‘9jed17

The integral component corresponds to the area under the absorption curve on a plot
of molar absorptivity vs. wavenumber (¢ vs. V). As € is characteristic for each
frequency, line intensity is sufficient here without integration.

Classical theory fails to explain the wide variation in oscillator strengths



Oscillator strength ( f ): quantum mechanical model

For an electronic transition to occur an oscillating dipole must be induced by
interaction of the molecules electric field with electromagnetic radiation.

To understand the absorption coefficient a knowledge of dipole moments is required.
In fact both € and k¥ can be related to the transition dipole moment (L)

If two equal and opposite electrical charges (e) are separated by a vectorial distance
(r), a dipole moment (& ) of magnitude equal to er is created.

u=er (e = electron charge,
r = extent of charge displacement)

The magnitude of charge separation, as the electron density is redistributed in an
electronically excited state, is determined by the polarizability of the electron cloud
(o) which is defined by the transition dipole moment (4,.)

o=,/ E (E = electrical force)

/uge=er



The magnitude of the oscillator strength ( f ) for an electronic transition is
proportional to the square of the transition dipole moment produced by the action of
electromagnetic radiation on an electric dipole.

J o< f” = (er)?

The dipole strength of an electronic transition is equal to er which can be viewed as
the average size of the transition dipole moment where r is the dipole vector length.

Combining the classical oscillator strength with the quantization of the oscillation of
electrons we have an expression relating f and g,

8mm,v _
f= (—Bheez )Mée = 10757 |ery,| 2

This equation may be rewritten to express f in terms of the matrix element of initial
and final electronic state wave functions which are responsible for the transition
dipole moment

8mTm,v 5
F=\37 (P1|P|¥>)



