Bonding in transition metal complexes

Crystal Field Theory (CFT)

- Assumes electrostatic (ionic) interactions between ligands and metal ions
- Useful for understanding magnetism and electronic spectra

Valence Bond (VB) Theory

- Assumes covalent M–L bonds formed by ligand electron donation to empty metal hybrid orbitals.
- Useful for rationalizing magnetic properties, but cannot account for electronic spectra.
- Offers little that cannot be covered better by other theories.

Molecular Orbital (MO) Theory

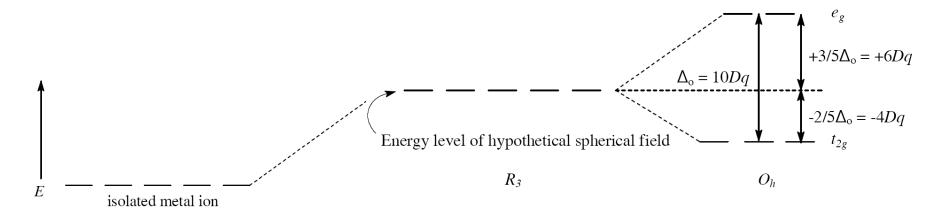
- Approach using M–L general MOs
- Excellent quantitative agreement, but less useful in routine qualitative discussions

Ligand Field Theory (LFT)

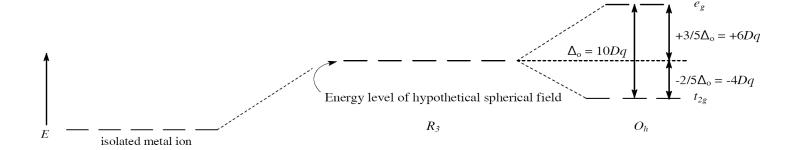
- Modified CFT
- Makes empirical corrections to account for effects of M–L orbital overlap, improving quantitative agreement with observed spectra

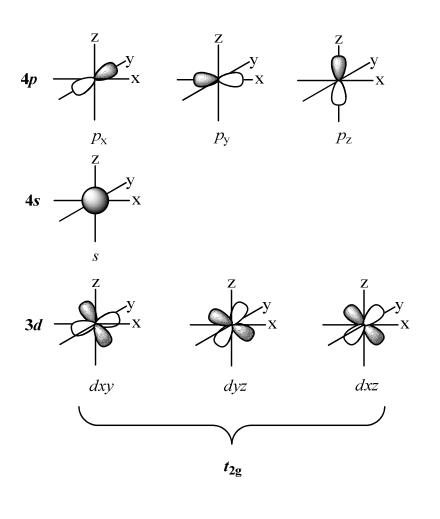
CFT & d-subshell Splitting in an O_h Field

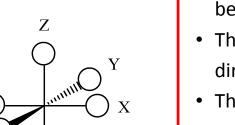
- In the octahedral (O_h) environment the fivefold degeneracy among the d orbitals is lifted.
- If the ligand field is of O_h symmetry the d subshell will separate into a set of three degenerate orbitals ($t_{2g} = dxy$, dyz, dxz) and a set of two degenerate orbitals ($e_g = dx^2 y^2$, dz^2).



• Relative to the energy of the hypothetical spherical field, the $e_{\rm g}$ set will rise in energy and the $t_{\rm 2g}$ set will fall in energy, creating an energy separation of $\Delta_{\rm o}$ or 10 Dq between the two sets of d orbitals.

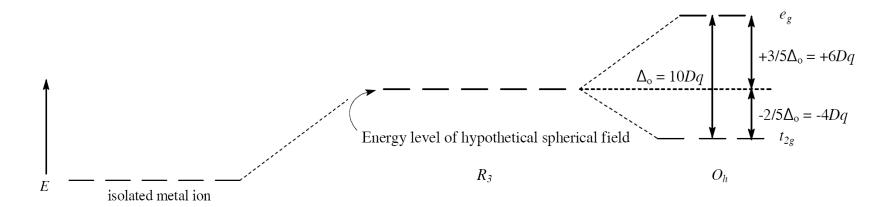






 $e_{\mathbf{g}}$

- The $t_{\rm 2g}$ orbitals point between ligands.
- \bullet The $\,e_{\rm g}\,$ orbitals point directly at the ligands.
- Thus, the t_{2g} set is stabilized and the e_{g} set is destabilized (relative to the energy of a hypothetical spherical electric field).



- The energy increase of the $e_{\rm g}$ orbitals and the energy decrease of the $t_{\rm 2g}$ orbitals must be balanced relative to the energy of the hypothetical spherical field (aka the barycenter).
- The energy of each of the two orbitals of the $e_{\rm g}$ set rises by +3/5 $\Delta_{\rm o}$ (+6 Dq) while the energy of each of the three $t_{\rm 2g}$ orbitals falls by -2/5 $\Delta_{\rm o}$ (-4 Dq).
- This results in no net energy change for the system:

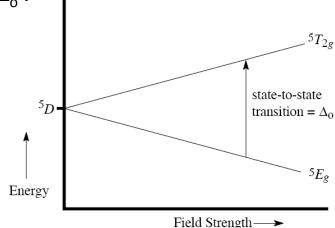
$$\Delta E = E(e_g) + E(t_{2g})$$

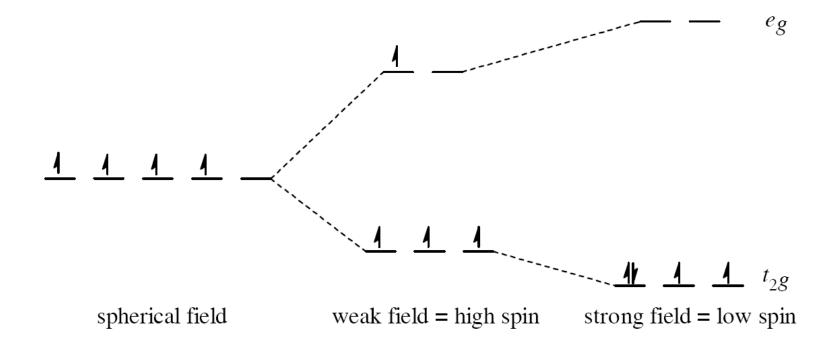
= (2)(+3/5 Δ_o) + (3)(-2/5 Δ_o)
= (2)(+6Dq) + (3)(-4Dq) = 0

(The magnitude of Δ_o depends upon both the metal ion and the attaching ligands)

High-Spin and Low-Spin Configurations

- In an octahedral complex, electrons fill the $t_{2\rm g}$ and $e_{\rm g}$ orbitals in an aufbau manner, but for configurations d^4-d^7 there are two possible filling schemes depending on the magnitude of $\Delta_{\rm o}$ relative to the *mean electron pairing energy*, P.
- A high-spin configuration avoids pairing by spreading the electrons across both the $t_{\rm 2g}$ and $e_{\rm g}$ levels.
- A low-spin configuration avoids occupying the higher energy $e_{\rm g}$ level by pairing electrons in the $t_{\rm 2g}$ level.
- For a given metal ion, the pairing energy is relatively constant, so the spin state depends upon the magnitude of the field strength, $\Delta_{\rm o}$.
- Low field strength results in a high-spin state.
- High field strength results in a low-spin state.
- For example, a d^4 configuration, the high-spin state is $t_{2g}^3 e_g^1$, and the low-spin state is $t_{2g}^4 e_g^0$.





- Low field strength results in a high-spin state.
- High field strength results in a low-spin state.
- For a d^4 configuration, the high-spin state is $t_{2g}^3 e_g^1$, and the low-spin state is $t_{2g}^4 e_g^0$.

MO used for most sophisticated and quantitative interpretations

LFT used for semi-quantitative interpretations

CFT used for everyday qualitative interpretations

Construction of MO diagrams for Transition Metal Complexes

σ bonding only scenario

General MO Approach for MX_n Molecules

• To construct delocalized MOs we define a *linear combination of atomic orbitals* (*LCAOs*) that combine central-atom AOs with combinations of pendant ligand orbitals called SALCs:

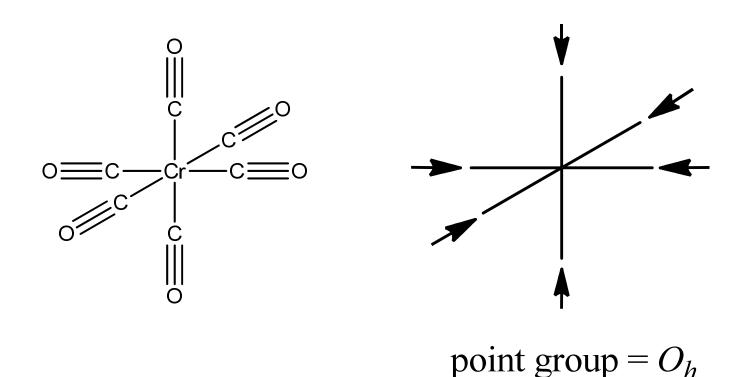
$$\Psi_{MO} = a \Psi \text{ (Metal AO) } \pm b \Psi \text{ (SALC } nX\text{)}$$

(SALC = Symmetry Adapted Linear Combination)

 SALCs are constructed with the aid of group theory, and those SALCs that belong to a particular species of the group are matched with central-atom AOs with the same symmetry to make bonding and antibonding MOs.

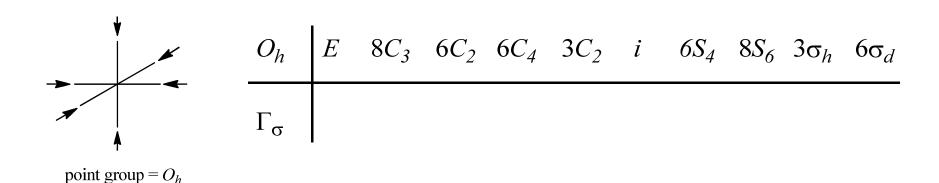
$$\Psi_{SALC} = c_1 \Psi_1 \pm c_2 \Psi_2 \pm c_3 \Psi_3 \dots \pm c_n \Psi_n$$

1. Use the directional properties of potentially bonding orbitals on the outer atoms (shown as vectors on a model) as a basis for a representation of the SALCs in the point group of the molecule.



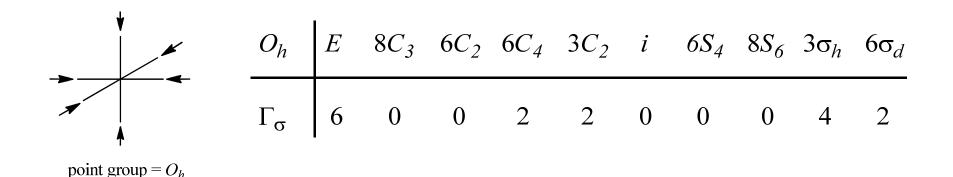
- 2. Generate a <u>reducible representation</u> for all possible SALCs by noting whether vectors are shifted or non-shifted by each class of operations of the group.
 - Each vector shifted through space contributes 0 to the character for the class.

 Each non-shifted vector contributes 1 to the character for the class.



- 2. Generate a <u>reducible representation</u> for all possible SALCs by noting whether vectors are shifted or non-shifted by each class of operations of the group.
 - ➤ Each vector shifted through space contributes 0 to the character for the class.

 Each non-shifted vector contributes 1 to the character for the class.



Decompose the reducible representation into its component irreducible representations to determine the symmetry species of the SALCs.

 For complex molecules with a large dimension reducible representation, identification of the component irreducible representations and their quantitative contributions can be carried out systematically using the following equation

$$n_i = \frac{1}{h} \sum_c g_c \chi_i \chi_r$$

 n_i : number of times the irreducible representation i occurs in the reducible representation

h : order of the group

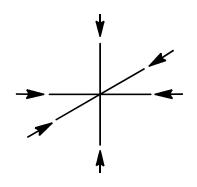
c: class of operations

 g_c : number of operations in the class

 χ_i : character of the irreducible representation for the operations of the class

 χ_r : character of the reducible representation for the operations of the class

The work of carrying out a systematic reduction is better organized by using the tabular method, rather than writing out the individual equations for each irreducible representation.



Character Table for O_h

point group = O_h

O_h	E	8 <i>C</i> ₃	6 <i>C</i> ₂	$6C_4$	$3C_2$	i	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$	h=	= 48
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
$E_{ m g}$	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	$(R_{\rm x}, R_{\rm y}, R_{\rm z})$	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
A_{1u}	1	1	1	1	1	-1	- 1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

Transformation Properties of Central AOs

• Transformation properties for the standard AOs in any point group can be deduced from listings of vector transformations in the character table for the group.

s – transforms as the totally symmetric representation in any group.

 \boldsymbol{p} – transform as x, y, and z, as listed in the second-to-last column of the character table.

d – transform as xy, xz, yz, x^2-y^2 , and z^2 (or $2z^2-x^2-y^2$)

e.g., in T_d and O_h , as listed in the last column of the character table.

Mulliken Symbols - Irreducible Representation Symbols

• In non-linear groups:

A : non-degenerate; symmetric to C_n where $\chi(C_n) = 1$.

B : non-degenerate; anti-symmetric to C_n where $\chi(C_n) = -1$.

E : doubly-degenerate; $\chi(E) = 2$.

T: triply-degenerate; $\chi(T) = 3$.

G: four-fold degeneracy; $\chi(G) = 4$, observed in I and I_h

H : five-fold degeneracy; $\chi(H) = 5$, observed in *I* and I_h

• In linear groups C_{∞_V} and D_{∞_h} :

 $\Sigma \equiv A$ non-degenerate; symmetric to C_{∞} ; $\chi(C_{\infty}) = 1$.

 $\Pi, \Delta, \Phi \equiv E$ doubly-degenerate; $\chi(E) = 2$.

Mulliken Symbols - Modifying Symbols

With any degeneracy in any centrosymmetric groups:

subscript g: gerade; symmetric with respect to inversion; $\chi_i > 0$.

subscript u: ungerade; anti-symmetric with respect to inversion; $\chi_i < 0$.

• With any degeneracy in non-centrosymmetric non-linear groups:

prime (') : symmetric with respect to σ_h ; $\chi(\sigma_h) > 0$.

double prime ("): anti-symmetric with respect to σ_h ; $\chi(\sigma_h) < 0$.

• With non-degenerate representations in non-linear groups:

subscript 1 : symmetric with respect to C_m (m < n) or σ_v ;

 $\chi(C_m) > 0 \text{ or } \chi(\sigma_v) > 0.$

subscript 2 : anti-symmetric with respect to C_m (m < n) or σ_v ;

 $\chi(C_m)$ < 0 or $\chi(\sigma_v)$ < 0.

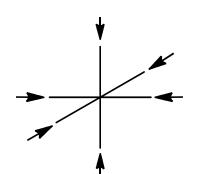
• With non-degenerate representations in linear groups (C_{∞_V} and D_{∞_h}):

subscript + : symmetric with respect to ∞C_2 or $\infty \sigma_{\nu}$;

 $\chi(\infty C_2) = 1 \text{ or } \chi(\infty \sigma_h) = 1.$

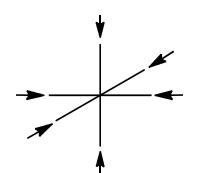
subscript – : anti-symmetric with respect to ∞C_2 or $\infty \sigma_v$;

 $\chi(\infty C_2) = -1 \text{ or } \chi(\infty \sigma_h) = -1.$



Systematic Reduction for O_h

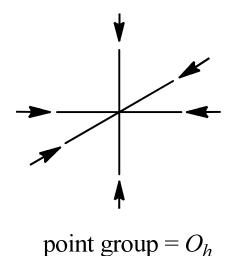
O_h	E	8 <i>C</i> ₃	6 <i>C</i> ₂	6 <i>C</i> ₄	$3C_2$	i	6S ₄	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$	Σ	$n_{\rm i} = \Sigma/h$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2		(h=48)
A_{1g}												
A_{2g}												
E_{g}												
T_{1g}												
T_{2g}												
A_{1u}												
$A_{2\mathrm{u}} \ E_{\mathrm{u}}$												
T_{1u}												
T_{2u}												



Systematic Reduction for O_h

O_h	$oxed{E}$	8 <i>C</i> ₃	6 <i>C</i> ₂	6C ₄	$3C_2$	i	6S ₄	8S ₆	$3\sigma_h$	$6\sigma_d$	Σ	$n_{\rm i} = \Sigma/h$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2		(h = 48)
A_{1g}	6	0	0	12	6	0	0	0	12	12	48	1
A_{2g}	6	0	0	-12	6	0	0	0	12	-12	0	0
E_{g}	12	0	0	0	12	0	0	0	24	0	48	1
T_{1g}	18	0	0	12	- 6	0	0	0	-12	-12	0	0
T_{2g}	18	0	0	-12	-6	0	0	0	-12	12	0	0
A_{1u}	6	0	0	12	6	0	0	0	-12	-12	0	0
A_{2u}	6	0	0	-12	6	0	0	0	-12	12	0	0
E_{u}	12	0	0	0	12	0	0	0	-24	0	0	0
T_{1u}	18	0	0	12	- 6	0	0	0	12	12	48	1
T_{2u}	18	0	0	-12	- 6	0	0	0	12	-12	0	0

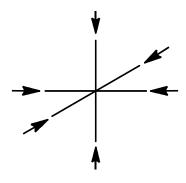
4. The number of SALCs, including members of degenerate sets, must equal the number of ligand orbitals taken as the basis for the representation.



$$\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$$

$$d_{\Gamma} = 1 + 2 + 3 = 6$$

5. Determine the symmetries of potentially bonding central-atom AOs by inspecting unit vector and direct product transformations listed in the character table of the group.



point group =
$$O_h$$

$\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$

Cr bonding AOs

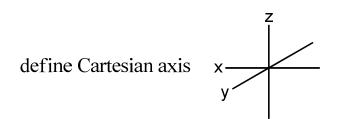
 $A_{1g}:4s$

 $T_{1u}: (4p_x, 4p_y, 4p_z)$

 E_g : $(3dx^2-y^2, 3dz^2)$

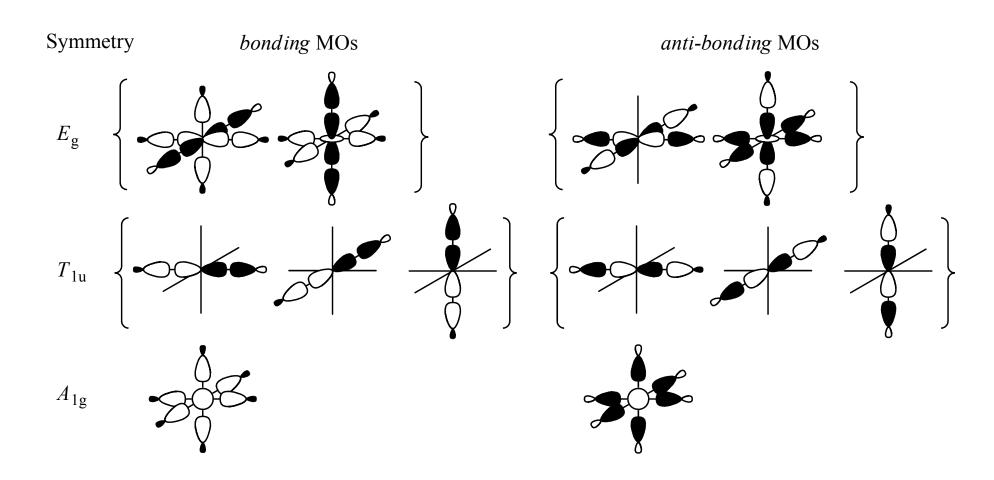
Cr non-bonding AOs

 T_{2g} : (3dxy, 3dxz, 3dyz)



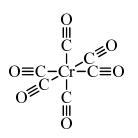
Symmetry	AOs	SALCs
E_{g}	$\left\{ \begin{array}{c c} & & \\ \hline \\ dx^2-y^2 & dz^2 \end{array} \right\}$	
T_{1u}	$\left\{\begin{array}{c cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	
$A_{1\mathrm{g}}$	S	

6. Central-atom AOs and pendant-atom SALCs with the same symmetry species will form both bonding and antibonding LCAO-MOs.

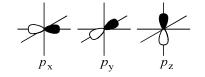


7. Central-atom AOs or pendant-atom SALCs with unique symmetry (no species match between AOs and SALCs) form nonbonding MOs.

non-bonding AOs $T_{2g} = \begin{cases} dxy & dxz & dyz \end{cases}$



Cr



$$dz^2 dx^2-y^2$$

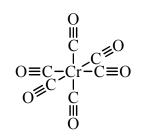
$$\frac{dxy}{dxy} \frac{dxz}{dyz} \frac{dyz}{dyz}$$

6CO

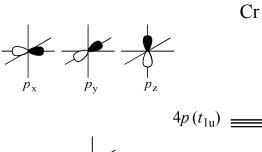
$$\left\{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right\} E_{\mathrm{g}}$$

$$\left\{\begin{array}{c} \\ \\ \\ \\ \end{array}\right\} T_{\mathrm{lu}}$$

$$A_{\mathrm{lg}}$$

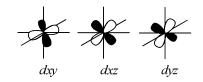


6CO



$$4s (a_{1g}) \underline{\hspace{1cm}}$$

$$3d (t_{2g}, e_{g}) \equiv \equiv dx^{2} - dx^{2} - y^{2}$$

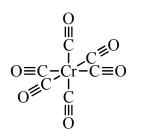


$$\left\{\begin{array}{c|c} & & & \\ & & & \\ \end{array}\right\} E_{\rm g}$$

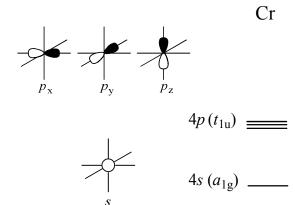
$$\left\{\begin{array}{c|c} & & & \\ & & & \\ \end{array}\right\} T_{\rm lu}$$

$$A_{\rm lg}$$

$$=$$
 e_{g} $=$ t_{1u} a_{1g}



6CO



$$3d (t_{2g}, e_g) =$$

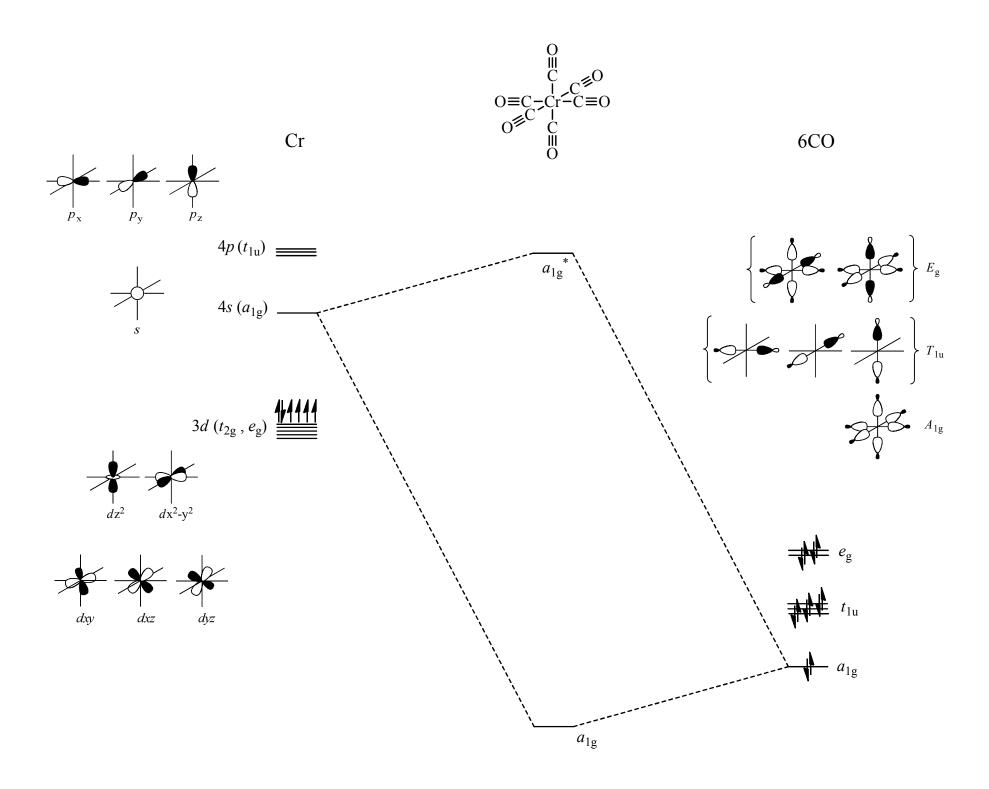
$$\frac{dxy}{dxz} \frac{dyz}{dyz}$$

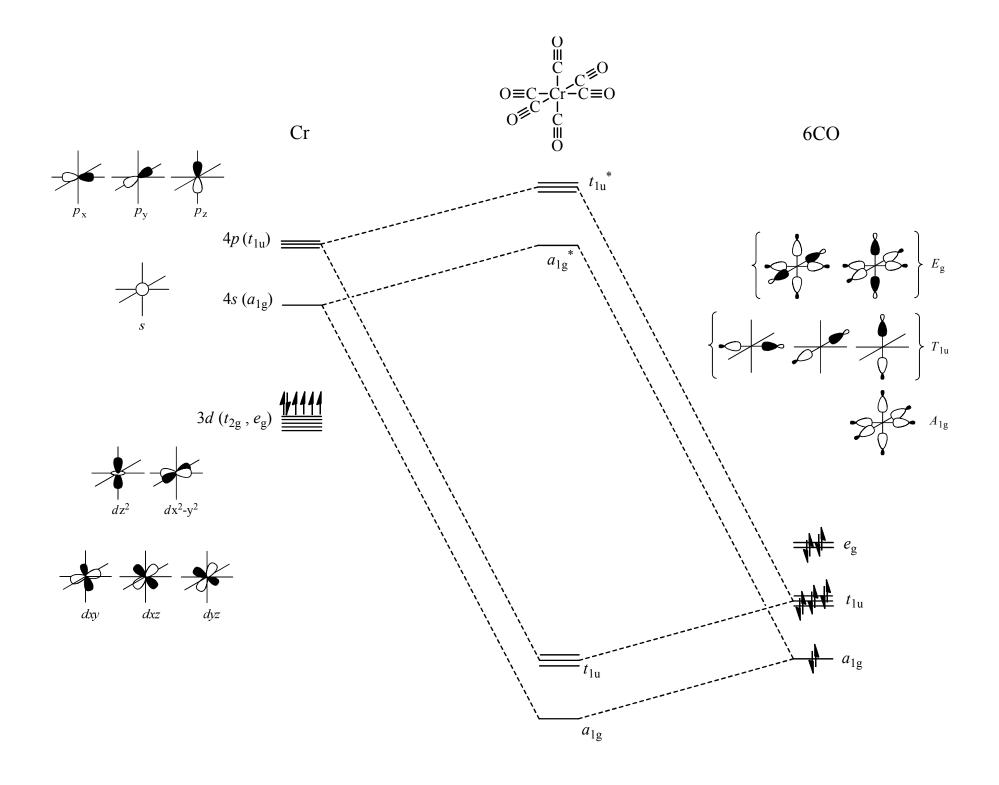
$$\left\{\begin{array}{c|c} & & & \\ & & & \\ \end{array}\right\} E_{\rm g}$$

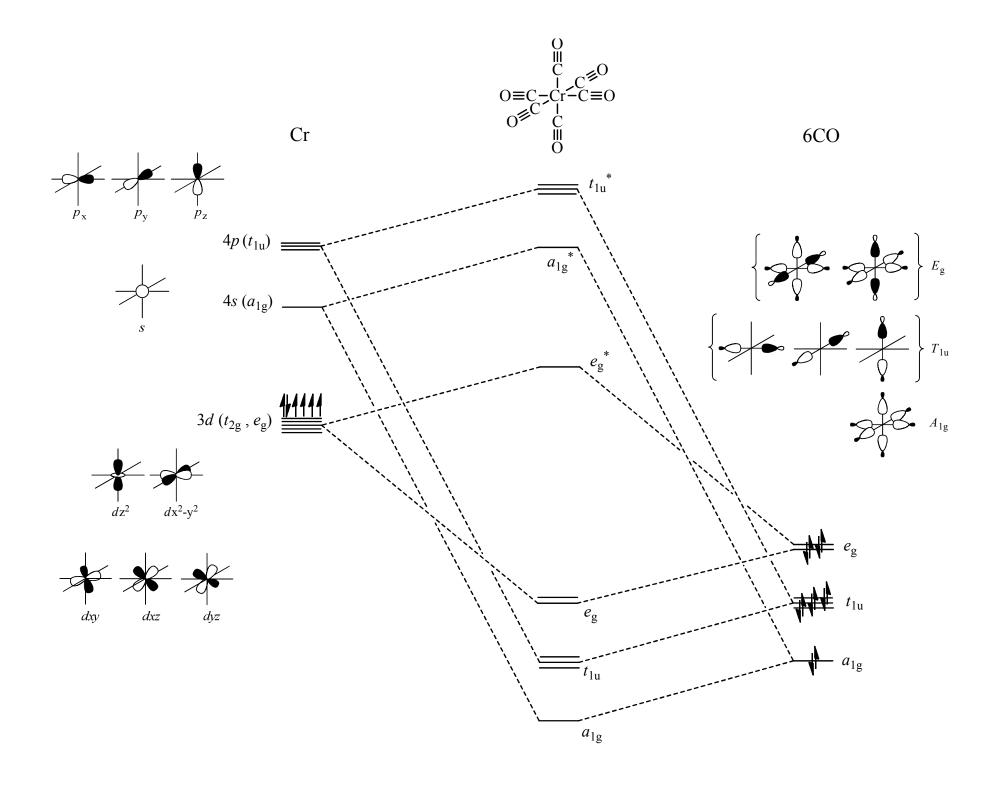
$$\left\{\begin{array}{c|c} & & & \\ & & & \\ \end{array}\right\} T_{\rm lu}$$

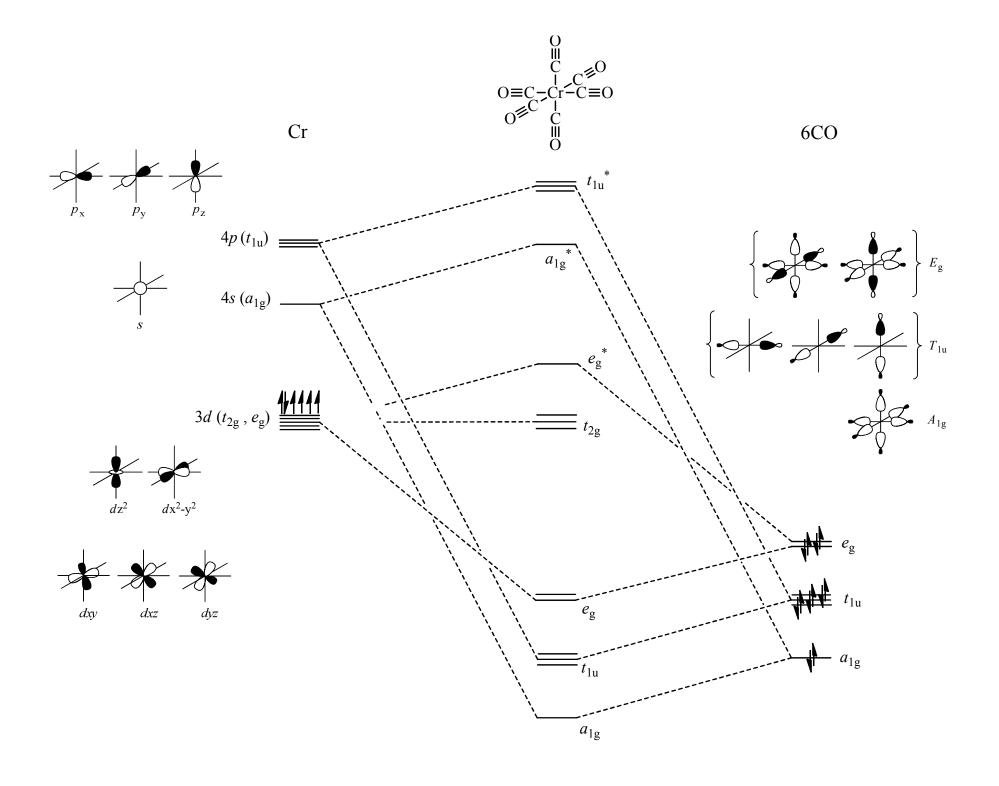
$$A_{\rm lg}$$

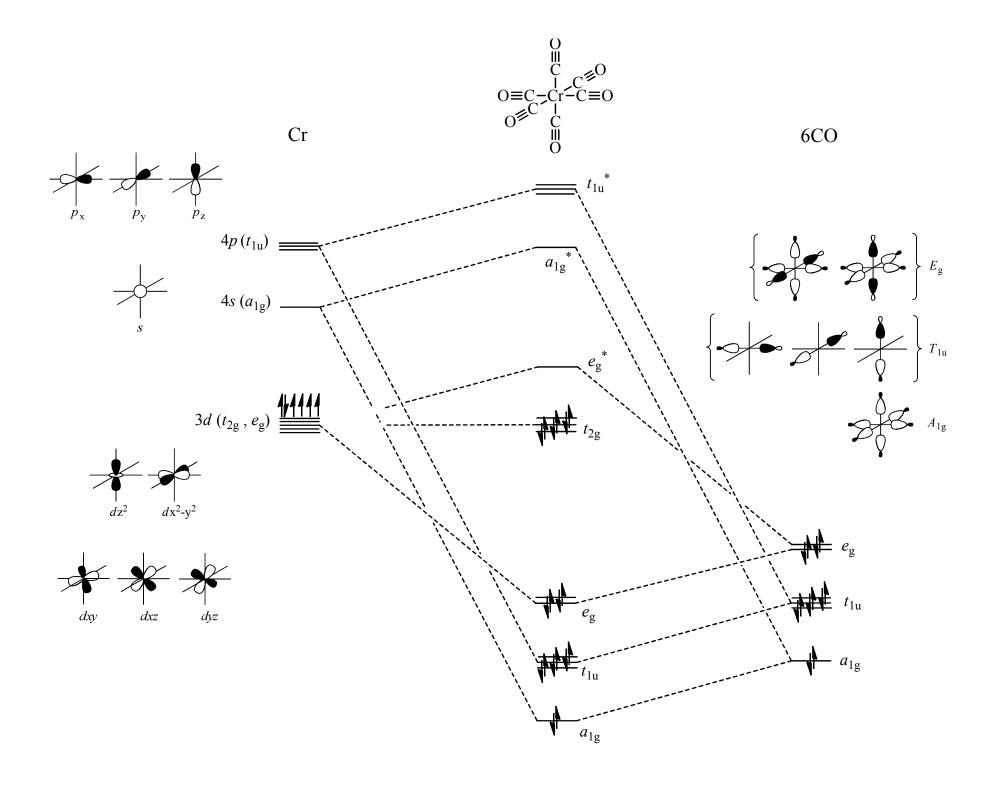
$$e_{g}$$
 t_{1u}
 a_{1g}

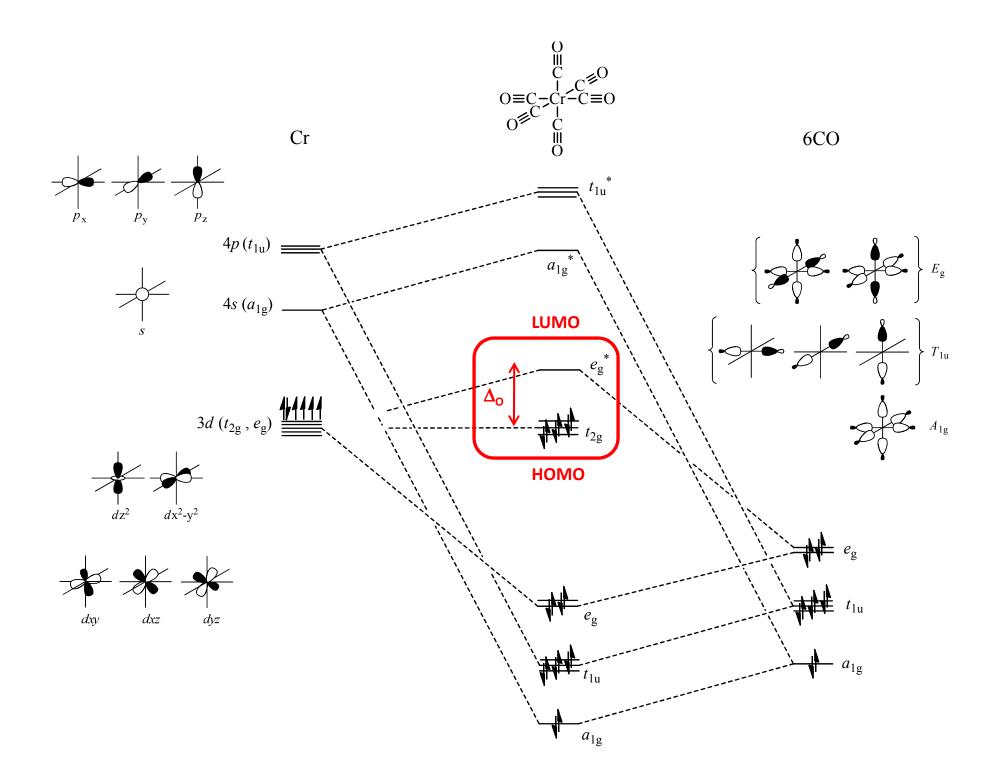






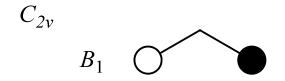


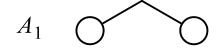




SALCS for Common Geometries (σ bonding)

CN = **2**



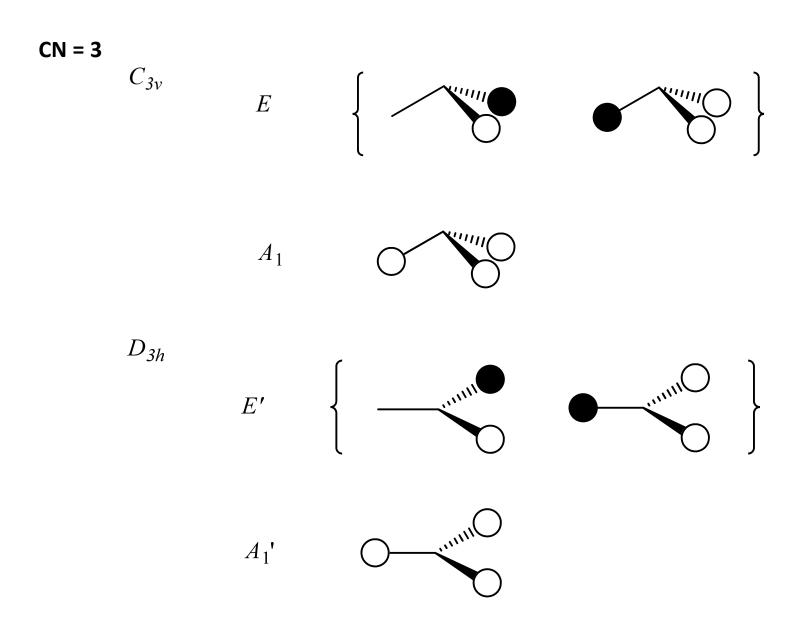


 $D_{\infty h}$

$$\Sigma_{\rm u}^{+}$$

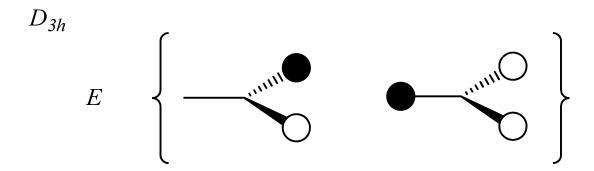
$$\Sigma_g^+$$
 \bigcirc

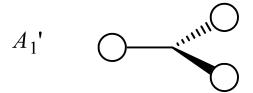
SALCS for Common Geometries (σ bonding)



SALCS for Common Geometries (σ bonding)

CN = 3





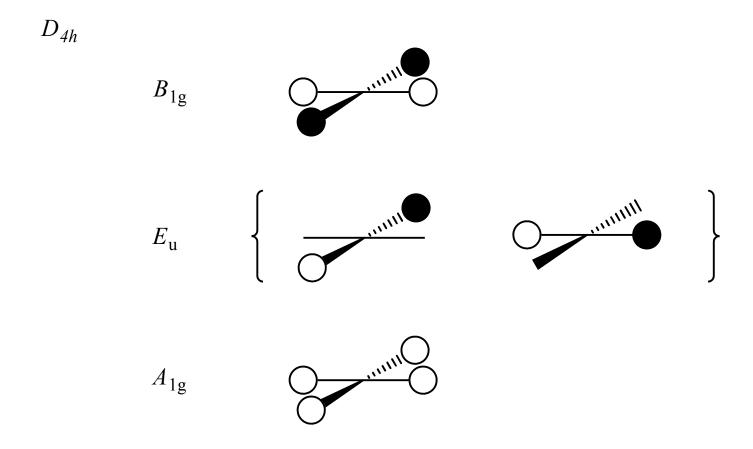
SALCS for Common Geometries (σ bonding)

$$T_d$$

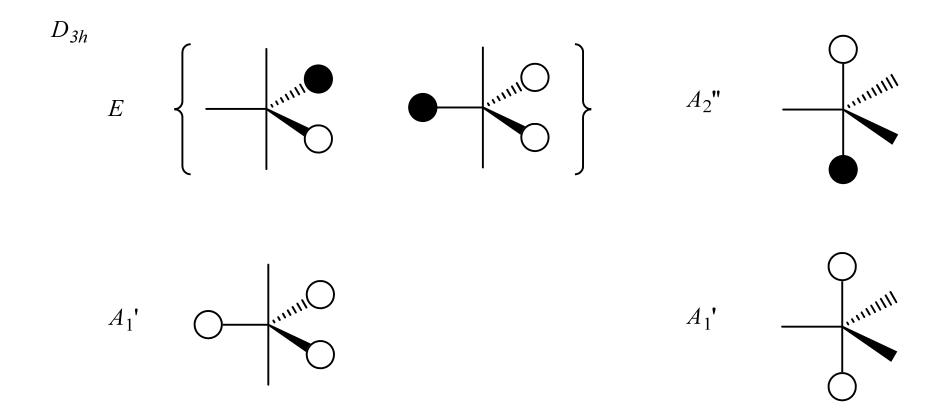
$$\left\{\begin{array}{c} T_2 \end{array}\right\}$$

$$A_1$$

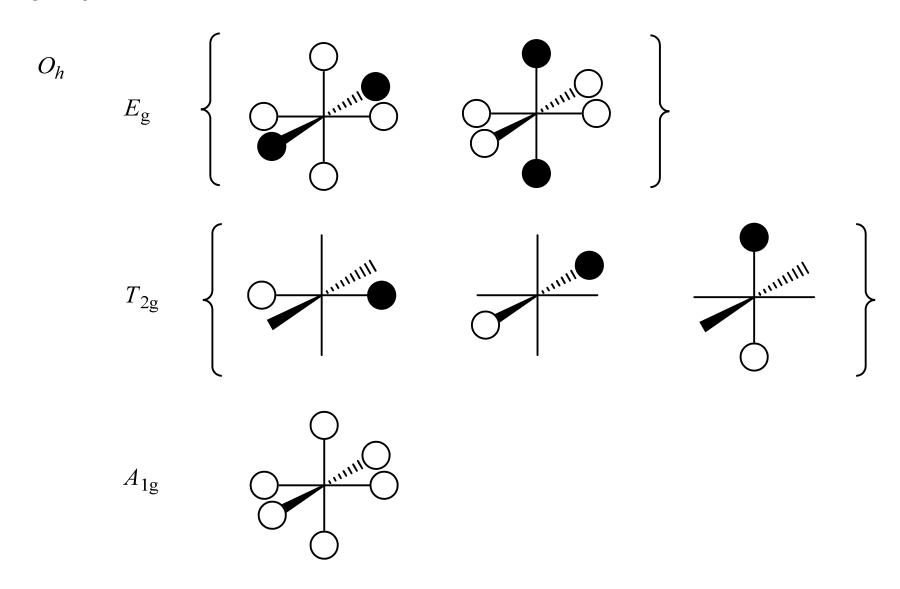
SALCS for Common Geometries (σ bonding)



SALCS for Common Geometries (σ bonding)

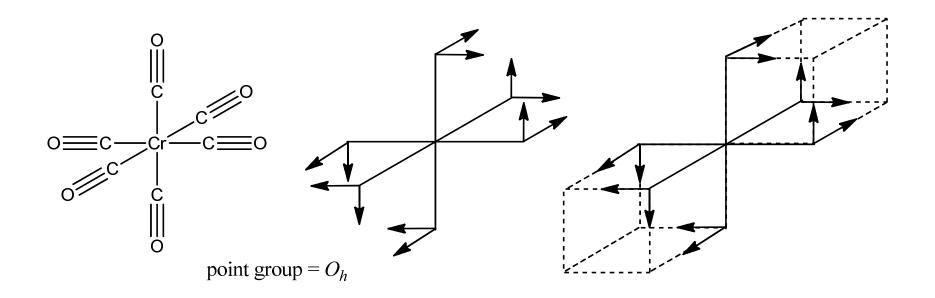


SALCS for Common Geometries (σ bonding)

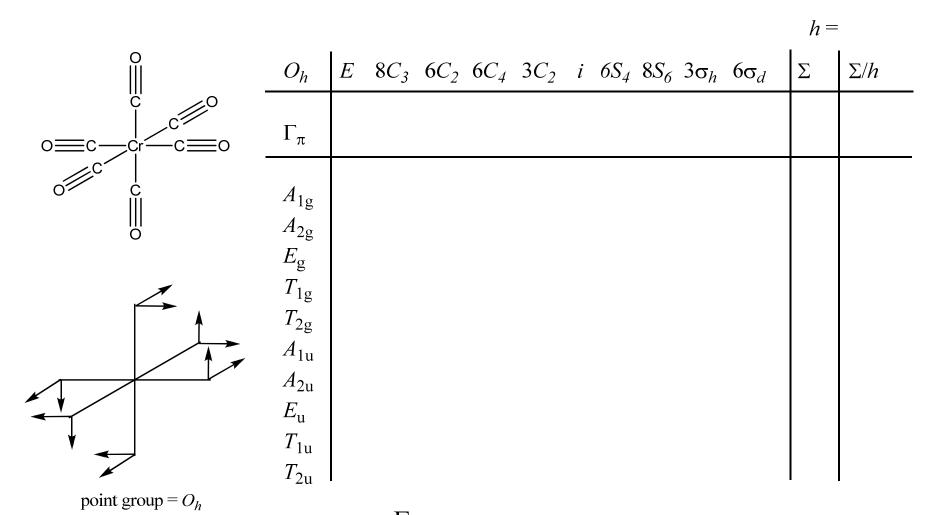


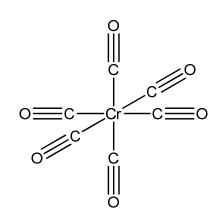
Construction of MO diagrams for Transition Metal Complexes

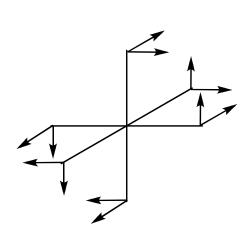
 π bonding complexes



- Each vector shifted through space contributes 0 to the character for the class.
- Each non-shifted vector contributes 1 to the character for the class.
- Each vector shifted to the negative of itself (180°) contributes -1 to the character for the class.







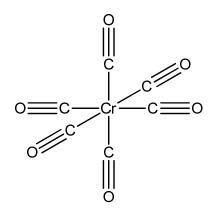
point group = O_h

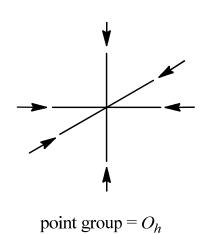
O_h	E	8 <i>C</i> ₃	6 <i>C</i> ₂	6 <i>C</i> ₄	3 <i>C</i> ₂	i	6S ₄	8S ₆	$3\sigma_h$	$6\sigma_d$	Σ	Σ/h
Γ_{π}	12	0	0	0	-4	0	0	0	0	0		
A_{1g}	12	0	0	0	-12	0	0	0	0	0	0	0
A_{2g}	12	0	0	0	-12	0	0	0	0	0	0	0
$E_{\mathbf{g}}$	24	0	0	0	-24	0	0	0	0	0	0	0
T_{1g}	36	0	0	0	12	0	0	0	0	0	48	1
T_{2g}	36	0	0	0	12	0	0	0	0	0	48	1
A_{1u}	12	0	0	0	-12	0	0	0	0	0	0	0
A_{2u}	12	0	0	0	-12	0	0	0	0	0	0	0
E_{u}	24	0	0	0	-24	0	0	0	0	0	0	0
T_{1u}	36	0	0	0	12	0	0	0	12	0	48	1
T_{2u}	36	0	0	0	12	0	0	0	12	0	48	1

h = 48

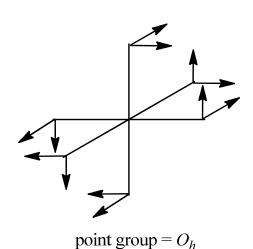
$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

$$d_{\Gamma} = 3 + 3 + 3 + 3 = 12$$





$$\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}$$



$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

$$\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$$

$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

 $Cr \sigma$ -bonding AOs

 $Cr \pi$ -bonding AOs

Cr non-bonding AOs

$$\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$$

$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$

Cr σ-bonding AOs

 $A_{1g}:4s$

 $T_{1u}: (4p_x, 4p_y, 4p_z)$

 $E_{\rm g}$: $(3dx^2-y^2, 3dz^2)$

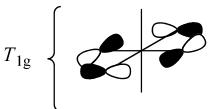
Cr non-bonding AOs

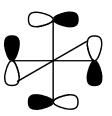
 T_{2g} : (3dxy, 3dxz, 3dyz)

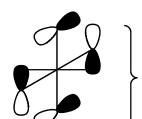
Cr π -bonding AOs

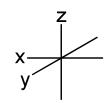
 T_{2g} : (3dxy, 3dxz, 3dyz) $T_{1u}: (4p_x, 4p_y, 4p_z)$

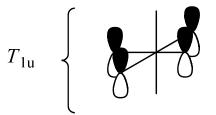
- T_{2g} previously considered nonbonding in σ -bonding scheme
- $T_{\rm 1u}$ combines with $T_{\rm 1u}$ SALC in in σ -bonding scheme $T_{\rm 1g}$, $T_{\rm 2u}$ π -SALCs are nonbonding

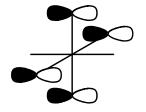


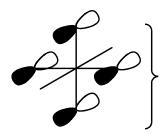


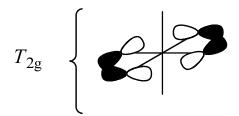


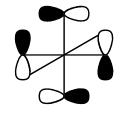


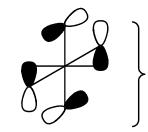


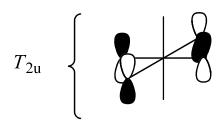


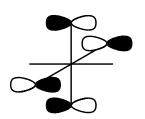


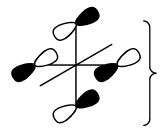


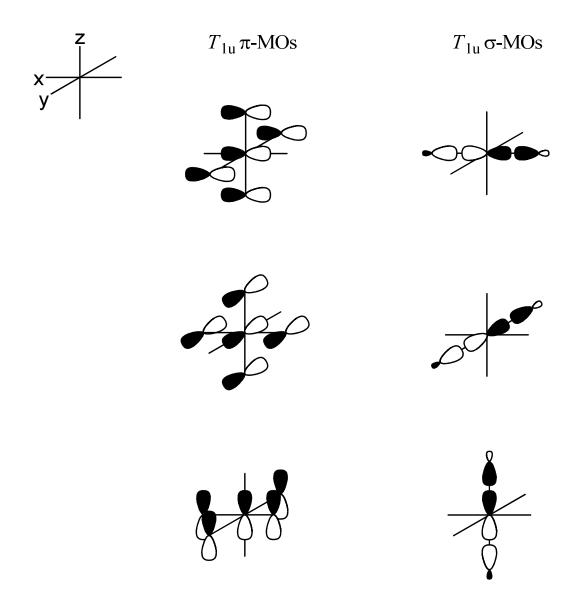




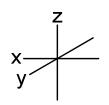




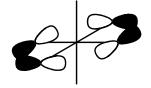




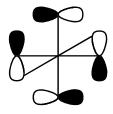
• T_{1u} AOs overlap more effectively with T_{1u} σ -SALC thus the π -bonding interaction is considered negligible or at most only weakly-bonding.



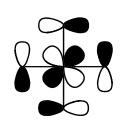
 T_{2g} π -MOs



dxy

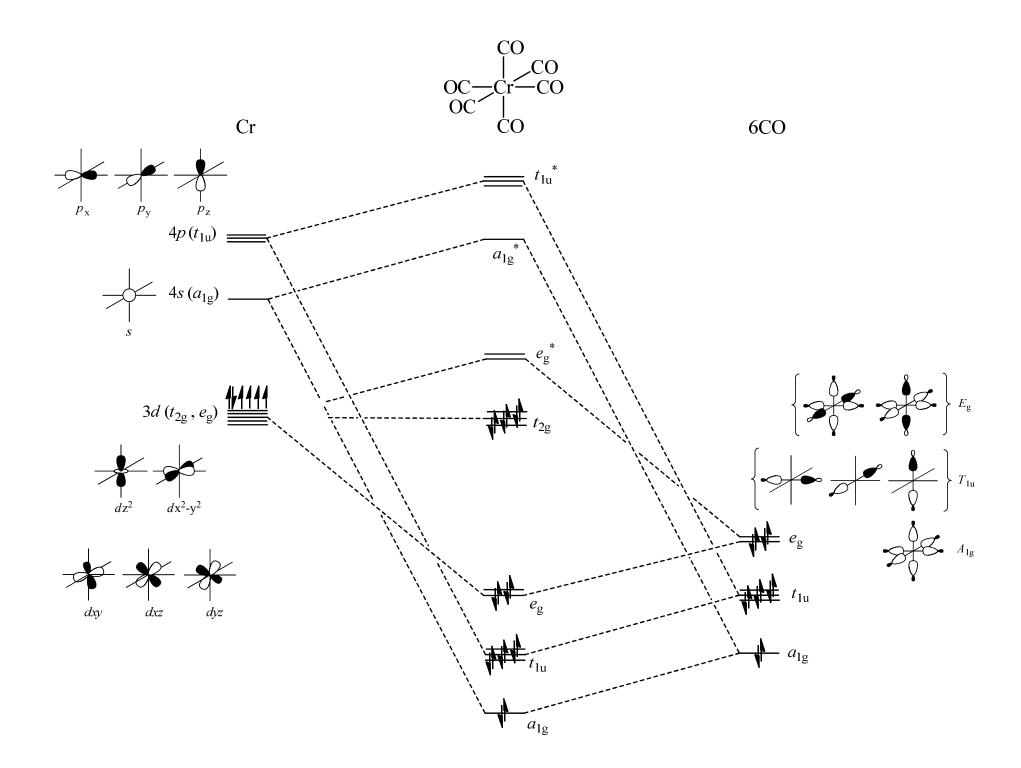


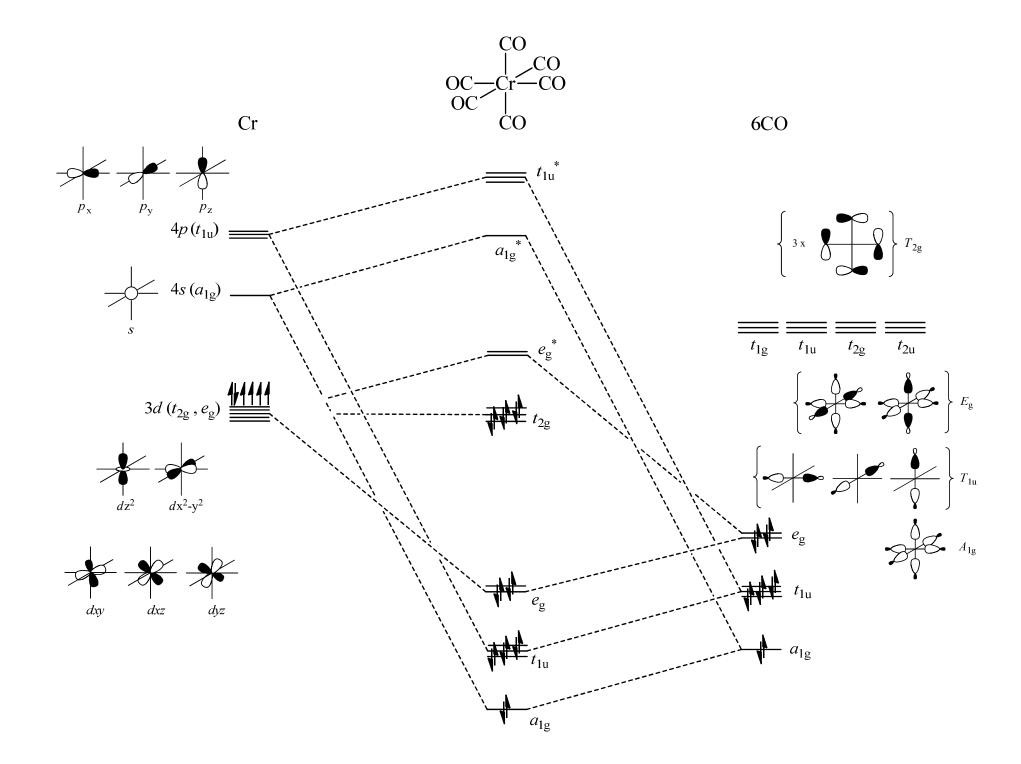
dxz

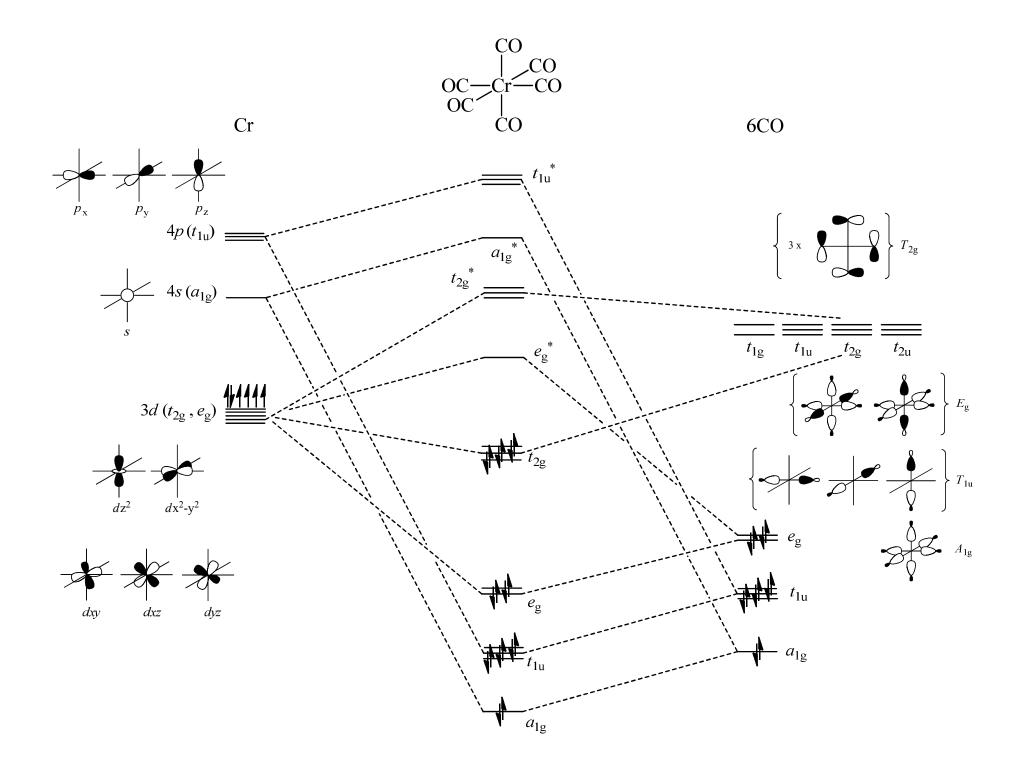


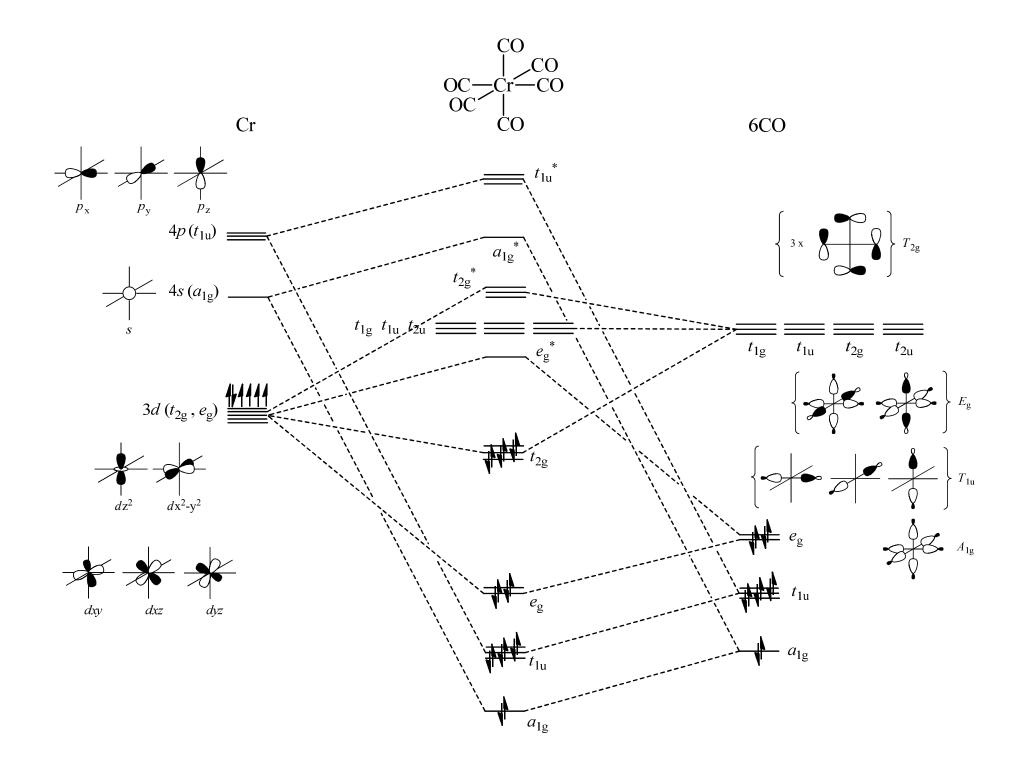
dxz, dyz or dxy

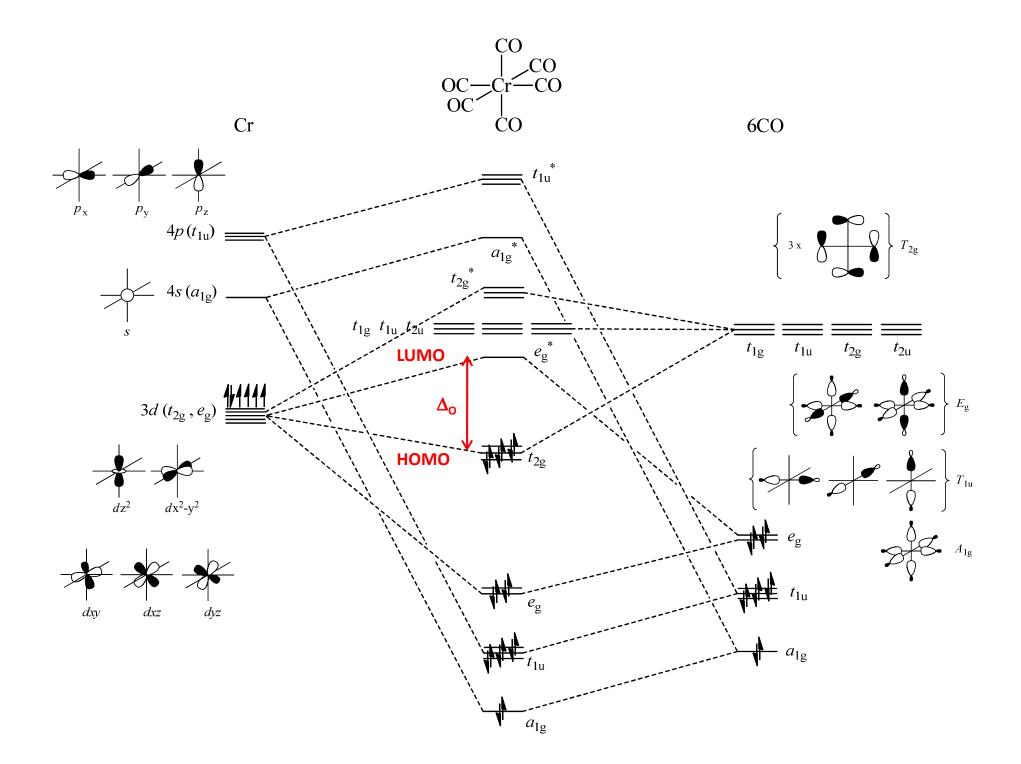
dyz



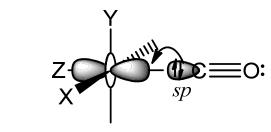


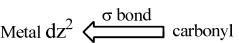


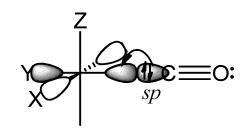


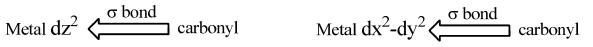


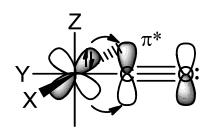
Dewar-Chatt-Duncanson model











Metal dyz
$$\frac{\pi\text{-back-donation}}{\text{carbonyl}}$$

	ν(CO) cm ⁻¹
[Ti(CO) ₆] ²⁻	1748
[V(CO) ₆]-	1859
Cr(CO) ₆	2000
[Mn(CO) ₆] ⁺	2100
[Fe(CO) _c] ²⁺	2204

Summary of π -bonding in O_h complexes

