Constructing a MO of NH₃

C_{3v}	E	$2C_{3}$	$3\sigma_v$	
Γ_{SALC}	3	0	1	

 $\Gamma_{\text{SALC}} = A_1 + E$

Nitrogen AO symmetries are

 $s = A_1$ $p_z = A_1$ $(p_x, p_y) = E$

- To develop a MO scheme for NH₃ assume that only the 2*s* and 2*p* orbitals of nitrogen interact with the hydrogen 1*s* orbitals (i.e., the nitrogen 1*s* orbital is nonbonding).
- All AOs match with SALCs, so there are no nonbonding levels.
- Both s and p_z AOs match the A_1 SALC, so s-p mixing is likely.
- If bonding and antibonding combinations were formed for both *s* and p_z AOs, we would end up with eight MOs, but only seven AOs on N and H are available (disregarding the 1s AO on N). We must make only three MOs from the *s* and p_z AOs and the A_1 SALC. For simplicity, we will assume that the *s* and p_z AOs each form essentially separate bonding MOs, but that together they form a single mixed antibonding MO. The resulting MO scheme is shown below, where hashed lines indicate lesser contributions from *s*-*p* mixing.
- Two AOs of nitrogen match symmetry with one of the SALCs, thereby forming three MOs. Of these, the lowest energy MO is essentially a bonding combination formed between the hydrogen SALC and the 2s AO on nitrogen, and the highest MO is an antibonding combination formed from a mixture of the two AOs from nitrogen and the same symmetry SALC.

Lewis base character of NH₃, because the $\sigma(z)$ MO has considerable electron density above the nitrogen, not unlike the customary picture of the VB model's lone-pair sp^3 hybrid.

π MOs of Benzene, C₆H₆

- C_6H_6 , has three pairs of electrons delocalized in a π system extending around the hexagonal ring.
- The six 2p orbitals perpendicular to the ring on the six carbon atoms combine to form three bonding (π^1 , π^2 , π^3) and three antibonding (π^{4*} , π^{5*} , π^{6*}) MOs.
- The symmetries and forms of these MOs can be deduced by applying the operations of the point group D_{6h} to a set of six vectors perpendicular to the ring, one at each carbon, to generate a reducible representation Γ_{π} .

 π MOs of Benzene, C₆H₆

h = 24

D_{6h}	Ε	$2C_6$	2 <i>C</i> ³	C_2	3 <i>C</i> ₂ ′	3 <i>C</i> ₂ "	i	$2S_3$	2 <i>S</i> ₆	σ_h	$3\sigma_d$	$3\sigma_v$	Σ	Σ/h
Γ_{π}	6	0	0	0	-2	0	0	0	0	-6	0	2		
A_{1g}	6	0	0	0	-6	0	0	0	0	-6	0	6	0	0
A_{2g}^{-s}	6	0	0	0	6	0	0	0	0	-6	0	-6	0	0
B_{1g}	6	0	0	0	-6	0	0	0	0	6	0	-6	0	0
B_{2g}	6	0	0	0	6	0	0	0	0	6	0	6	24	1
E_{lg}	12	0	0	0	0	0	0	0	0	12	0	0	24	1
E_{2g}	12	0	0	0	0	0	0	0	0	-12	0	0	0	0
A_{1u}	6	0	0	0	-6	0	0	0	0	6	0	-6	0	0
A_{2u}	6	0	0	0	6	0	0	0	0	6	0	6	24	1
B_{1u}	6	0	0	0	-6	0	0	0	0	-6	0	6	0	0
B_{2u}	6	0	0	0	6	0	0	0	0	-6	0	-6	0	0
E_{1u}	12	0	0	0	0	0	0	0	0	-12	0	0	0	0
E_{2u}	12	0	0	0	0	0	0	0	0	12	0	0	24	1
	I												-	

 $\Gamma_{\pi} = B_{2g} + E_{1g} + A_{2u} + E_{2u}$

 $d_{\Gamma} = 1 + 2 + 1 + 2 = 6$

$$\Gamma_{\pi} = B_{2g} + E_{1g} + A_{2u} + E_{2u}$$

π MOs of Benzene, C₆H₆

$$\pi_6(B_{2g}) = (1/\sqrt{6}) (\phi_a - \phi_b + \phi_c - \phi_d + \phi_e - \phi_f)$$

$$\pi_4^{*}(E_{2u}) = (1/2\sqrt{3}) (2\phi_a - \phi_b - \phi_c + 2\phi_d - \phi_e - \phi_f)$$

$$\pi_5^{*}(E_{2u}) = (1/2) (-\phi_b + \phi_c - \phi_e + \phi_f)$$

$$\pi_{2}(E_{1g}) = (1/2\sqrt{3}) (2\phi_{a} + \phi_{b} - \phi_{c} - 2\phi_{d} - \phi_{e} - \phi_{f})$$

$$\pi_{2}(E_{1g}) = (1/2) (\phi_{b} + \phi_{c} - \phi_{e} - \phi_{f})$$

$$\pi_1(A_{2u}) = (1/\sqrt{6}) (\phi_a + \phi_b + \phi_c + \phi_d + \phi_e + \phi_f)$$

$$\Gamma_{\pi} = B_{2g} + E_{1g} + A_{2u} + E_{2u}$$

 E_{2u} (4 nodes) anti-bonding

 E_{1g}

(2 nodes) bonding

 A_{2u} (0 nodes)
bonding

π MOs of Benzene, C₆H₆

$$\pi_6(B_{2g}) = (1/\sqrt{6}) (\phi_a - \phi_b + \phi_c - \phi_d + \phi_e - \phi_f)$$

$$\pi_4^*(E_{2u}) = (1/2\sqrt{3}) (2\phi_a - \phi_b - \phi_c + 2\phi_d - \phi_e - \phi_f)$$

$$\pi_5^*(E_{2u}) = (1/2) (-\phi_b + \phi_c - \phi_e + \phi_f)$$

$$\pi_{2}(E_{1g}) = (1/2\sqrt{3}) (2\phi_{a} + \phi_{b} - \phi_{c} - 2\phi_{d} - \phi_{e} + \phi_{f})$$

$$\pi_{2}(E_{1g}) = (1/2) (\phi_{b} + \phi_{c} - \phi_{e} - \phi_{f})$$

$$\pi_1(A_{2u}) = (1/\sqrt{6}) (\phi_a + \phi_b + \phi_c + \phi_d + \phi_e + \phi_f)$$

π MO Energy Level Scheme for Benzene, C₆H₆

• By the "shadow method" we can anticipate that the π -MO scheme will look like the following:

- Three pairs in bonding MOs add a total of three bond orders over six C–C linkages, or 0.5 for each.
- When this is added to the sigma bond between each carbon pair, the C–C bond order becomes 1.5.

π MOs of Cyclopentadienyl, C₅H₅⁻

- $C_5H_5^-$, has three pairs of electrons delocalized in a π system extending around the pentagonal ring.
- The five 2*p* orbitals perpendicular to the ring on the five carbon atoms combine to form three bonding (π^1 , π^2 , π^3) and three antibonding (π^{4*} , π^{5*} , π^{6*}) MOs.
- The symmetries and forms of these MOs can be deduced by applying the operations of the point group D_{5h} to a set of five vectors perpendicular to the ring, one at each carbon, to generate a reducible representation Γ_{π} .

π MOs of Cyclopentadienyl, C₅H₅⁻

_	D_{5h}	E	$2C_5$	$2C_{5}^{2}$	$5C_{2}$	σ_h	2 <i>S</i> ₅	$2S_{3}^{5}$	$5\sigma_v$	Σ	Σ/h	h = 20
_	Γ_{π}	5	0	0	-1	-5	0	0	1			
	A_1	5	0	0	-5	-5	0	0	5	0	0	
	A_2	5	0	0	5	-5	0	0	-5	0	0	
	E_1^{-}	10	0	0	0	-10	0	0	0	0	0	
	E_2	10	0	0	0	-10	0	0	0	0	0	
	$A_1^{-"}$	5	0	0	-5	5	0	0	-5	0	0	
	$A_{2}^{"}$	5	0	0	5	5	0	0	5	20	1	
	E_1 "	10	0	0	0	10	0	0	0	20	1	
	$E_2^{"}$	10	0	0	0	10	0	0	0	20	1	
		I								l	I	

 $\Gamma_{\pi} = A_2'' + E_1'' + E_2'' \qquad \qquad d_{\Gamma} = 1 + 2 + 2 = 5$

• The five p-orbitals on the planar Cp ring (D_{5h} symmetry) can be combined to produce five molecular orbitals according to the reducible representation:

$$\Gamma_{\pi} = A_2'' + E_1'' + E_2''$$

- One combination has the full symmetry of the ring $(a_2^{"})$
- There are two doubly degenerate combinations $(e_1^{"} \text{ and } e_2^{"})$ having one and two planar nodes at right angles to the plane of the ring.
- The relative energies of these orbitals increase as the number of nodes increases.
- The $a_2^{''}$ and $e_1^{''}$ orbitals are both fully occupied in the electronic configuration of the Cp⁻ anion whereas the $e_2^{''}$ orbitals are net anti-bonding and are unfilled.

The π -molecular orbitals of the cyclopentadienyl ring (D_{5h})

π MOs of the Allyl anion, C₃H₅⁻

- The alkyl anion has a delocalized, open, three-center π system.
- Although it is customary to assume that p_z orbitals are involved in forming π orbitals, in this case for constructing the MO diagram we will assume that p_x orbitals are used, in keeping with the standard character table and conventions of defining z as the principal axis and the yz plane as the plane of the C-C-C chain.

C_{2v}	E	C_2	$\sigma_{v(xz)}$	$\sigma_{v'(yz)}$	Σ	Σ/h	h = 4
Γ_{π}	3	-1	1	-3			
$ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \end{array} $	3 3 3 3	-1 -1 1 1	1 -1 1 -1	-3 3 3 -3	0 4 8 0	0 1 2 0	

 $\Gamma_{\pi} = A_2 + 2B_1$

$$d_{\Gamma} = 1 + 2 = 3$$

σ and π MOs of Boron Trifluoride, BF₃

- Although BH₃ is unstable, the BX₃ trihalides (X = F, Cl, Br) are stable but reactive compounds that have been well characterized.
- A significant advantage of the BX₃ compounds is the potential for π bonding between the $2p_z$ orbital of boron and the np_z orbitals of the halogens (n = 2, 3, 4).
- Although fluorine is the most electronegative of the halides this bonding is most significant for BF₃ due to closely matched energies with the central boron atom.

 $\Gamma_{\sigma} = A_1' + E'$ $d_{\Gamma} = 1 + 2 = 3$

- Based upon the symmetry of the 3F SALCs derived from the F 1s orbitals symmetry allowed overlap with the B $2s 2p_x$ and $2p_y$ orbitals is predicted.
- Due to energy considerations however this interaction is very weak and generally ignored.

- Overlap of the B 2s $2p_x$ and $2p_y$ orbitals with the 3F SALCs derived from the F $2p_x$ orbitals is more prominent.
- The $2p_y$ orbitals of the 3F atoms are considered non-bonding and are not considered here.

• Symmetry allowed sigma MOs derived from the 3F ($2p_x$) SALCs and the B $2s 2p_x$ and $2p_y$ orbitals.

D_{3h}	E	2 <i>C</i> ³	3 <i>C</i> ₂	σ_h	2 <i>S</i> ₃	$3\sigma_v$	Σ	Σ/h
Γ_{π}	3	0	-1	-3	0	1		
A_1	3	0	-3	-3	0	3	0	0
A_2'	3	0	3	-3	0	-3	0	0
$E^{\bar{\prime}}$	6	0	0	-6	0	0	0	0
A_1 "	3	0	-3	3	0	-3	0	0
<i>A</i> ₂ "	3	0	3	3	0	3	12	1
$E^{\prime\prime}$	6	0	0	6	0	0	12	1
Γ_{π}	f = A	d_{Γ}	- = 1	+ 2	= 3			

$$\Gamma_{\pi} = A_2'' + E''$$

Non-bonding SALCs of BF₃

• The 2p_y orbitals of the 3F atoms are considered non-bonding and are considered separately when deriving their irreducible representation.

$$\Gamma_n = A_2' + E'$$

• Consider the MO diagrams for both NH₃ and BF₃ and how the mechanism for the Lewis acid-base reaction may proceed.