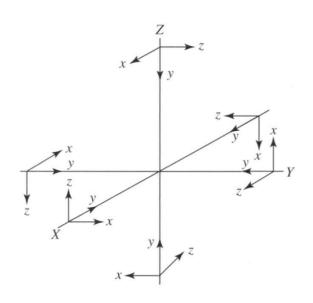

MO description of σ only bonding in an O_{h} transition metal complex



	Ion	Δ_o	П	Ion	Δ_o	П
d^{1}				Ti ³⁺	18,800	
d^2				V^{3+}	18,400	
d^3	V^{2+}	12,300		Cr^{3+}	17,400	
d^4	Cr^{2+}	9,250	23,500	Mn^{3+}	15,800	28,000
d^5	Mn^{2+}	$7,850^{b}$	25,500	Fe ³⁺	14,000	30,000
d^6	Fe ²⁺	9,350	17,600	Co ³⁺	16,750	21,000
d^7	Co^{2+}	8,400	22,500	Ni ³⁺		27,000
d^8	Ni ²⁺	8,600				
d^9	Cu^{2+}	7,850				
d^{10}	Zn^{2+}	0				

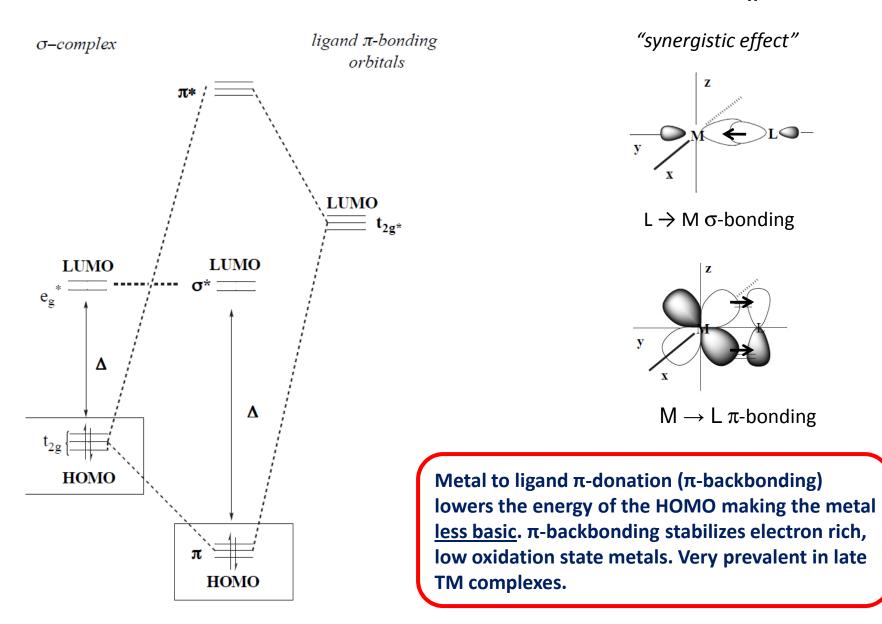
π bonding in an O_h system

• The ligand field p orbitals are taken as a single set of 12 orbitals in an O_h environment as each set can be converted into every other axis by a symmetry operation, i.e. they are all mutually equivalent.

$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

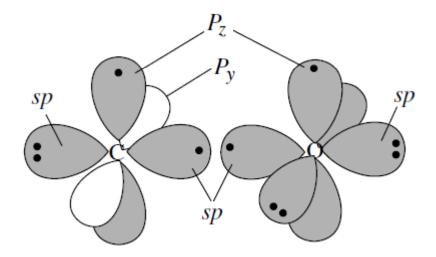
The axes for the ligand can be chosen in any consistent way. Here the x and y axes are orthogonal which is appropriate for p symmetry. Opposite ligands are also orthogonal to maintain O_h symmetry

O_h	E	8 <i>C</i> ₃	$6C_{2}$	$6C_4$	$3C_2 (= C_4^2)$	i	$6S_{4}$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$	
Γ_{π}	12	0	0	0	-4	0	0	0	0	0	
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1	(d_{xy}, d_{xz}, d_{yz})
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(p_x, p_y, p_z)
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1	

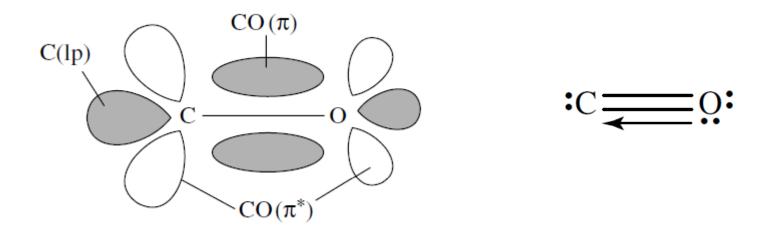

reducible representations of $\text{O}_{\text{h}}~\pi$ orbitals

- Of these four representations, the T_{1g} and T_{2u} have no match among the metal orbitals.
- However, the T_{2g} representation matches the dxy, dxz, dyz orbitals, and T_{1u} matches the px, py, pz orbitals of the metal.
- The p orbitals of the metal have more favorable σ bonding interactions with the ligands and will not overlap well with the ligand p orbitals.
- The metal t_{2g} orbitals, which are non-bonding in the σ only O_h bonding picture now participate in π bonding with the T_{2g} ligand orbital distributed over the 6 ligands producing a t_{2g} bonding and corresponding anti-bonding set.
- π bonding with transition metal complexes can occur with either filled or empty p or π^* ligand orbitals labeled π -donor and π -acceptor ligands respectively.

MO description for M \rightarrow L π -acceptor system in an O_h complex


- In the M \rightarrow L π -acceptor system empty π^* ligand orbitals exist slightly higher in energy than the metal t_{2g} set with which overlap occurs.
- As a result MO's are formed with the bonding orbitals lower in energy than the initial metal t_{2g} set and the anti-bonding orbitals higher in energy than the $e_{\rm g}^*$ σ anti-bonding orbitals.
- This stabilization of the t_{2g} orbitals through π -bonding increases the LFSE Δ_{o} and increases the bond strength of the M-L bond through an increased bond order.
- This metal to ligand π -donation also known as π -backbonding makes the metal less basic thus stabilizing electron rich, low oxidation state metals.
- M \rightarrow L π -backbonding represents a unique synergistic bonding situation where the greater the sigma donation to the metal, the greater the π -backbonding to the ligand.

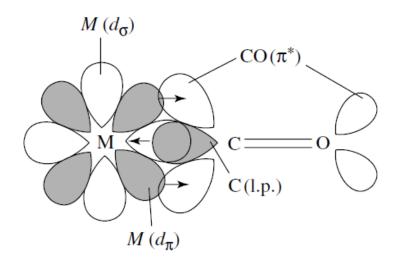
MO description for M \rightarrow L π -acceptor system in an O_h complex

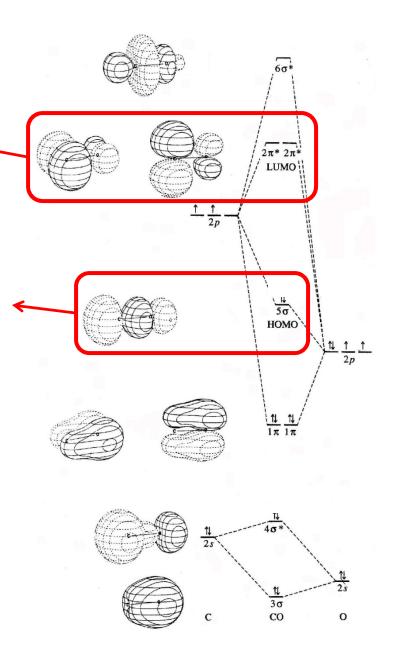


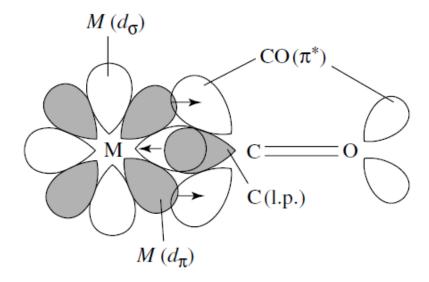
MO description of the CO ligand

- In the CO molecule both the C and the O atoms are *sp hybridized*.
- The singly occupied sp and p_z orbitals on each atom form a σ and a π bond, respectively.

• This leaves the C p_y orbital empty, and the O p_y orbital doubly occupied, and so the second π bond is formed only after we have formed a *dative bond* by transfer of the lone pair of O p_y electrons into the empty C p_y orbital.




- This transfer leads to a $C^{\delta-}$ – $O^{\delta+}$ polarization of the molecule, which is almost exactly canceled out by a partial $C^{\delta+}$ – $O^{\delta-}$ polarization of all three bonding orbitals because of the higher electronegativity of oxygen.
- The free CO molecule therefore has a net dipole moment very close to zero.


MO correlation diagram for CO

The CO LUMO orbitals are anti bonding of π^* symmetry. These are empty orbitals and accept electron density from the metal centre via π -backbonding with the metal t_{2g} orbitals.

The CO HOMO orbital is a bonding orbital of σ symmetry with significant electron density on the carbon. This orbital forms a σ bond with metal p and e_g orbitals. This is a filled orbital and donates electron density to the metal centre.

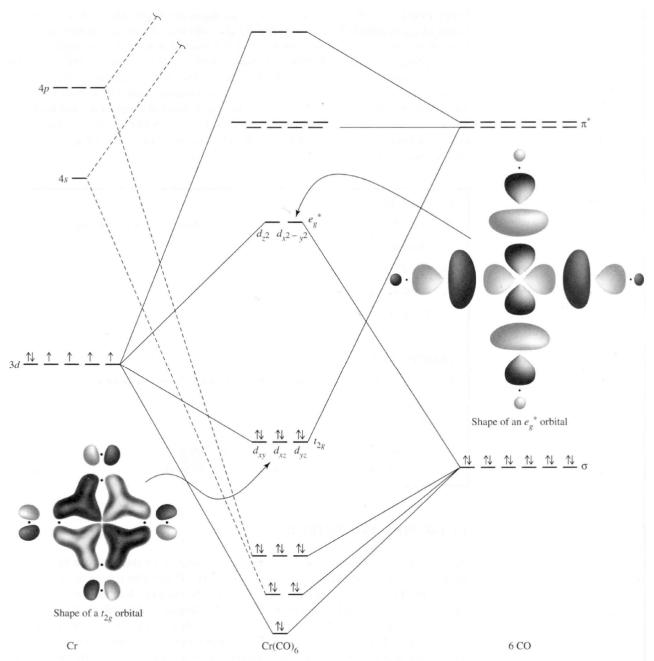
- The metal e_g orbital forms a σ bond with the HOMO orbital of CO.
- As shown on previous slides this HOMO is a σ orbital based on carbon.
- The metal t_{2g} orbitals form a π bond with the CO π^* LUMO (again polarized toward C)
- The metal HOMO, the filled M d π orbital, back donates to the CO LUMO increasing electron density at both C and O because CO π^* has both C and O character.
- The result is that C becomes more positive on coordination, and O becomes more negative. This translates into a polarization of the CO on binding.

- This metal-induced polarization chemically activates the CO ligand.
- It makes the carbon more sensitive to nucleophilic attack and the oxygen more sensitive to electrophilic attack.
- The polarization will be modulated by the effect of the other ligands on the metal and by the net charge on the complex.
- In LnM(CO), the CO carbon becomes particularly δ^+ in character if the L groups are good π acids or if the complex is cationic, e.g. $Mo(CO)_6$ or $[Mn(CO)_6]^+$, because the CO-to-metal σ -donor electron transfer will be enhanced at the expense of the metal to CO back donation.
- If the L groups are good donors or the complex is anionic, e.g. $Cp_2W(CO)$ or $[W(CO)_5]^{2-}$, back donation will be encouraged, the CO carbon will lose its pronounced δ^+ charge, but the CO oxygen will become significantly δ^- .

$$M^{-} \leftarrow C^{\partial +} \equiv O^{+} \qquad M = C = O \qquad M^{+} \equiv C - O^{-}$$

• The range can be represented in valence bond terms the extreme in which CO acts as a pure σ donor, through to the extreme in which both the π^*_x and π^*_y are both fully engaged in back bonding.

Phosphorus Ligand (L)	CO v, cm ⁻¹
D(+ D11)	2056
$P(t-Bu)_3$	2030
PCy_3	
$P(i-Pr)_3$	2059
$P(NMe_2)_3$	2062
PMe_3	2064
$PPhMe_2$	2065
PBz ₃	2066
PPh_2Me	2067
PPh_3	2069
PPh ₂ (OEt)	2072
$P(p-C_6H_4Cl)_3$	2073
PPh(OEt) ₂	2074
P(OEt) ₃	2077
PH_3	2083
PCl ₃	2097
PF_3	2111


CO stretching frequencies measured for Ni(CO)₃L where L are PR₃ ligands of different σ -donor abilities. [ν (CO) =2143 cm⁻¹]

The increase in electron density at the nickel from PR_3 σ-donation is dispersed through the M-L π system via π -backbonding. Much of the electron density is passed onto the CO π^* and is reflected in decreased v(CO) stretching frequencies which corresponds to weaker CO bonds.

$$v = \frac{1}{2\pi c} \left[\frac{f}{(M_x M_y)/(M_x + M_y)} \right]^{1/2}$$

Recall: Band position in IR is governed by :

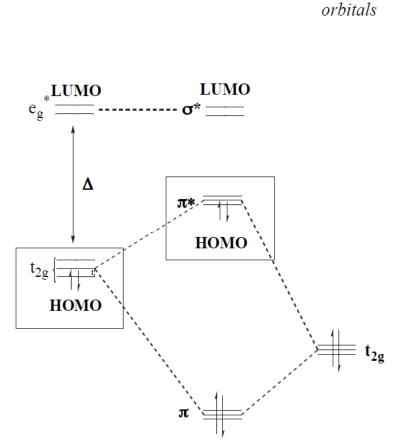
- 1. force constant of the bond (f) and
- 2. individual masses of the atoms $(M_x \text{ and } M_y)$. Stronger bonds have larger force constants than weaker bonds.

FIGURE 13-8 Molecular Orbital Energy Levels of Cr(CO)₆. (Adapted with permission from G. O. Spessard and G. L. Miessler, *Organometallic Chemistry*, Prentice Hall, Upper Saddle River, NJ, 1997, pp. 53–54, Figs. 3-2 and 3-3.)

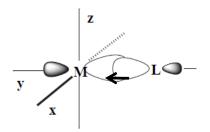
π -acceptor effects on reactivity

Semmelhack JACS 1980 (102) 5926

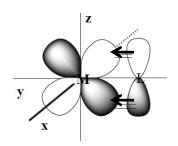
CO's render the electron rich Cr metal electrophilic via strong π -backbonding. Complexation of benzene with the electrophilic Cr(CO)3 fragment withdraws electon density from the aromatic ring activating it towards nucleophilic attack.


Acrolein is thought to act as a π -acid, withdrawing electron density from the Ni(II) complex via π -backbonding and promoting elimination of the diethyl fragment to reduce the metal.

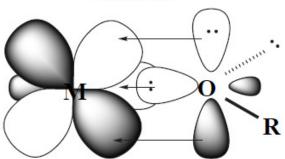
MO description for L \rightarrow M π -donor system in an O_h complex


- In the L \rightarrow M π -donor system filled p ligand orbitals exist slightly lower in energy than the metal t_{2g} set with which overlap occurs.
- The bonding t_{2g} MO's formed are again lower in energy than the initial metal t_{2g} set, however, the corresponding t_{2g}^* anti-bonding MO's are lower in energy than the e_g^* σ anti-bonding orbitals.
- Additionally, as the ligand t_{2g} p orbitals are initially filled and of lower energy the the metal t_{2g} set the bonding t_{2g} MO's formed are filled by the ligand electrons, with the metal d electrons occuppying the corresponding t_{2g}^* anti-bonding MO's .
- Thus the LFSE Δ_0 is decreased. The t_{2g} bonding MO's are stabilized which is countered by occupation of the t_{2g}^* anti-bonding orbitals.
- Overall this combined σ and p donation from ligand to metal results in an increased M-L bond order and a stronger bond, however, the metal now becomes more electron rich which can decrease the bond strengths of the remaining ligand set making ligand-metal π bonding a less favorable interaction.

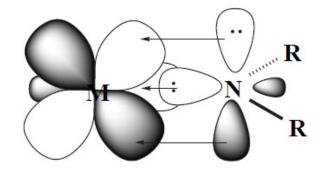
MO description for L \rightarrow M π -donor system in an O_h complex


ligand π -bonding

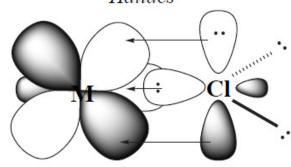
 σ -complex


 $L \rightarrow M \sigma$ -bonding

 $L \rightarrow M \pi$ -bonding

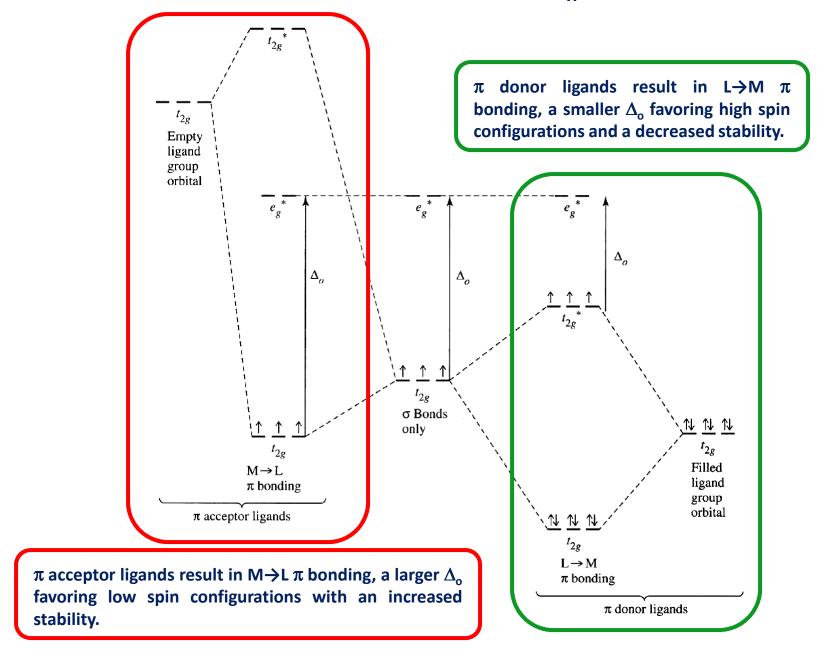

The energy of the HOMO is directly affected by M-L π -bonding. Ligand to metal π -donation increases the energy of the HOMO making the metal <u>more basic</u>. π -donor ligands stabilize electron poor, high oxidation state metals. Very prevalent for early TM complexes (low d electron count) and less so for late TM (high d electron count).

Alkoxides


 σ -bonding: L_{sp2} -> Md_{σ} π -donation: Lp -> Md $_{\pi}$

1°, 2° Amides

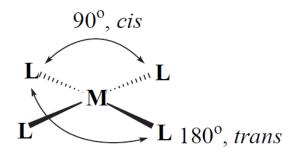
 $\sigma\text{-bonding: }L_{sp2}\text{--}\!\!>\! Md_{\sigma}$ π -donation: Lp -> Md $_{\pi}$


Halides

or I⁻, Br⁻, F⁻

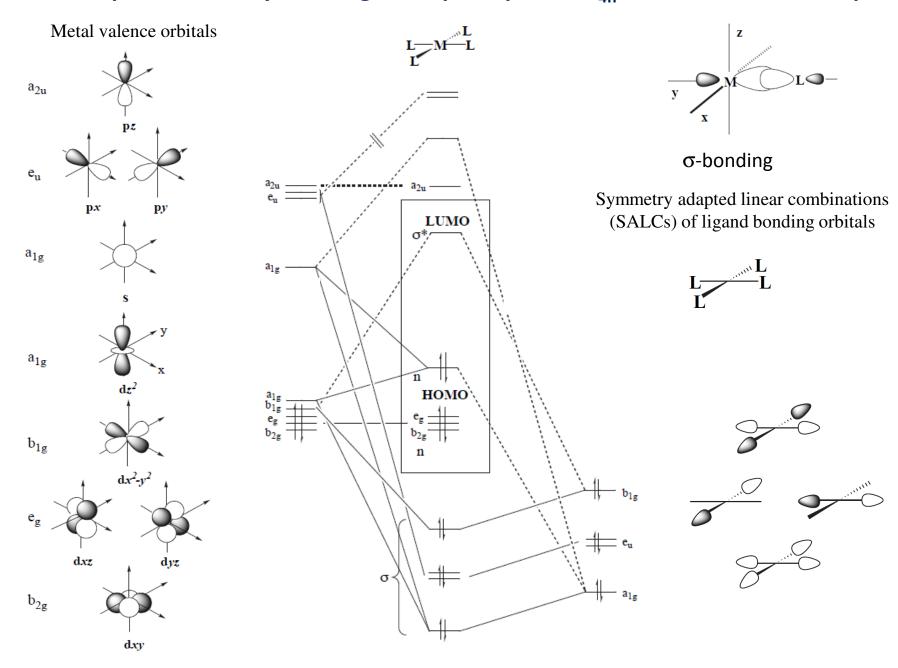
 $\sigma\text{-bonding: }L_{sp2}\text{--}\!>\!\mathrm{Md}_{\sigma}$ π -donation: Lp -> Md $_{\pi}$

Summary of π -bonding in a O_h complexes

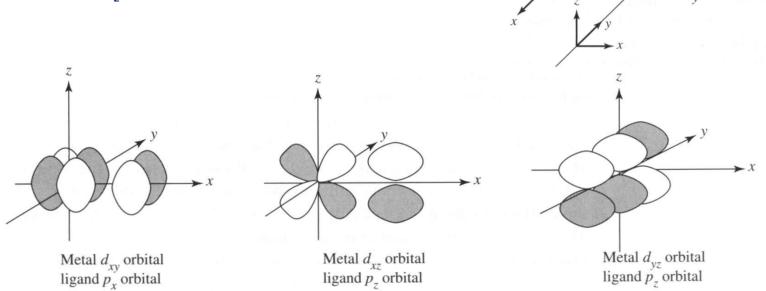


MO description of σ only bonding in a square planar D_{4h} transition metal complex

- Square planar complexes are of D_{4h} symmetry, i.e. of lower symmetry than O_h .
- The reducible representations of ligand σ bonding orbitals results in the representations A_{1g} , E_{u} and B_{1g}
- Through symmetry considerations the metals orbitals have the representations A_{1g} , E_{g} , B_{1g} and B_{2g} for the d set and E_{u} and A_{2u} for the p set. The s orbital remains A_{1g} .
- Bonding and corresponding anti-bonding MO's are thus formed from matching the four metal a_{1g} , e_{u} , b_{1g} d orbitals and the two e_{u} metal p orbitals with the ligand set.
- The metal a1g only has a minor contribution to ligand bonding $(x^2 + y^2)$ component).
- The $e_{\rm g}$ and $b_{\rm 2g}$ metal d orbitals and the metal $a_{\rm 2u}$ remain non-bonding.
- Eight electrons provided by the ligands fill the lowest three levels of MO's $(a_{1g}, e_{u} \text{ and } b_{1g})$
- Metal d electrons result in an equivalent filling of the b_{2g} and e_{g} non-bonding MO's and if necessary the a_{1g}^* anti-bonding MO's.
- High spin ground states are generally not observed (even with a small Δ) as this geometry is mostly favored by complexes of d⁰ and d⁸ electronic configurations.


TABLE 10-9
Representations and Orbital Symmetry for Square-Planar Complexes

D_{4h}	E	$2C_{4}$	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1g}	1	1	1	1		1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1		1	1	1	-1	-1	R_z	
B_{1g}	1	-1	1	1		1	-1	1	1	-1		$x^2 - y^2$
B_{2g}	1	-1	1	-1		1	-1	1	-1	1		xy
E_g	2	0	-2	0		2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1		-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1		-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	1		-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1		-1	1	-1	1	-1		
E_u	2	0	-2	0		-2	0	2	0	0	(x, y)	


square planar

MO description of σ only bonding in a square planar D_{4h} transition metal complex

π bonding in square planar D_{4h} transition metal complexes

- There are two distinctly different sets of potential p bonding orbitals
 - The parallel set $(\pi_{\parallel} \ or \ p_{\times} \ in \ the \ molecular \ plane)$
 - The perpendicular set $(\pi_{\perp} \ or \ p_z \ perpendicular \ to \ the \ plane)$

- The b_{2g} (metal dxy orbital) interacts with the p_x (π_{\parallel}) ligand orbitals
- The $e_{\rm g}$ (metal dxz and dyz orbitals) interact with the p_z (π_{\perp}) ligand orbitals

TABLE 10-9
Representations and Orbital Symmetry for Square-Planar Complexes

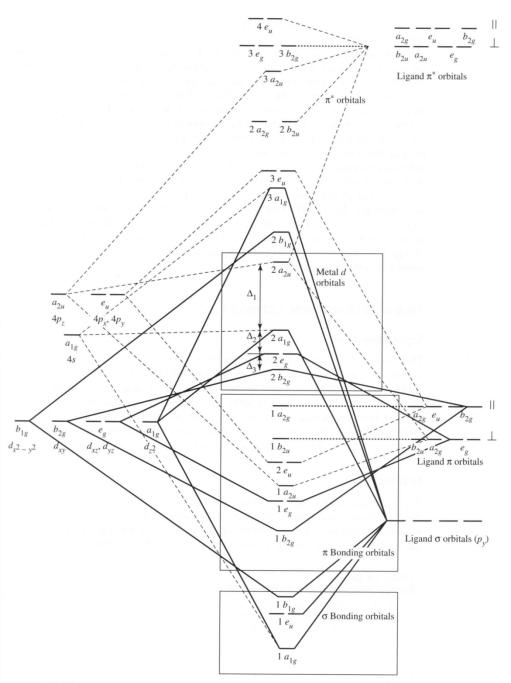
D_{4h}	E	$2C_4$	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1g}	1	1	1	1		1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1		1	1	1	-1	-1	R_z	
B_{1g}	1	-1	1	1		1	-1	1	1	-1		$x^2 - y^2$
B_{2g}	1	-1	1	-1		1	-1	1	-1	1		xy
E_g	2	0	-2	0		2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1		-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1		-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	1		-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1		-1	1	-1	1	-1		
E_u	2	0	-2	0		-2	0	2	0	0	(x, y)	
		2.0		201	26 "		2.0			2	1	
D_{4h}	E	$2C_4$	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σ_h	$2\sigma_{\nu}$	$2\sigma_d$		
Γ_{p_x}	4	0	0	-2		0	0	4	-2	0	p_{\parallel}	
Γ_{p_y}	4	0	0	2		0	0	4	2	0	p_{σ}	
Γ_{p_z}	4	0	0	-2		0	0	-4	2	0	p_{\perp}	

$$\Gamma_{p_y} = A_{1g} + B_{1g} + E_u$$

$$\Gamma_{p_x} = A_{2g} + B_{2g} + E_u$$

$$\Gamma_{p_z} = A_{2u} + B_{2u} + E_g$$

 (σ) Matching orbitals on the central atom:


$$s, d_{z^2}, d_{x^2-y^2}, (p_x, p_y)$$

(||) Matching orbitals on the central atom:

$$d_{xy}, (p_x, p_y)$$

 (\bot) Matching orbitals on the central atom:

$$p_z$$
, (d_{xz}, d_{yz})

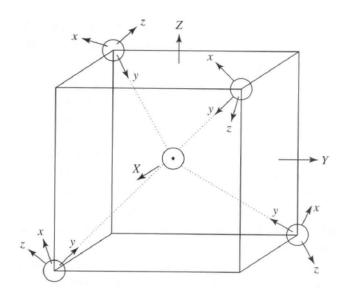
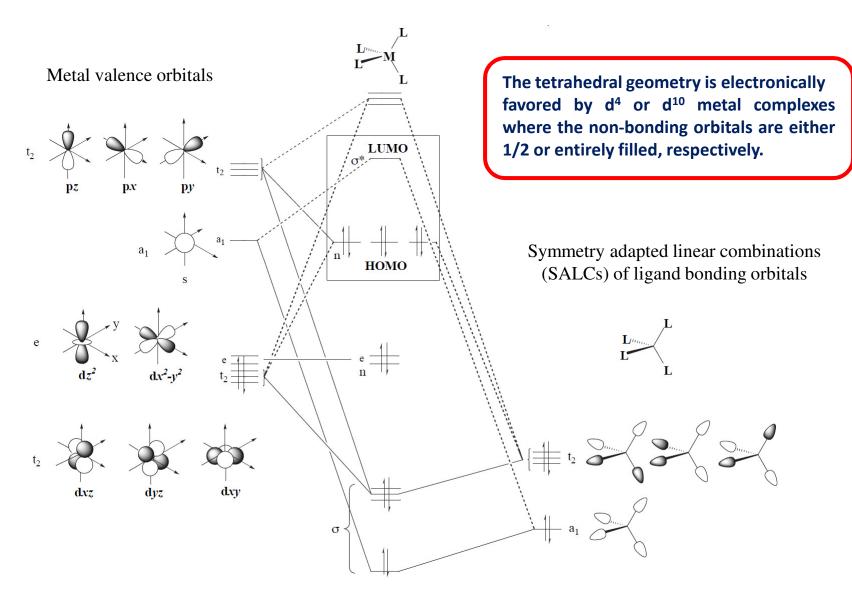


FIGURE 10-15 D_{4h} Molecular Orbitals, Including π Orbitals. Interactions with metal d orbitals are indicated by solid lines, interactions with metal s and p orbitals by dashed lines, and nonbonding orbitals by dotted lines.


- The lowest energy set contains the bonding orbitals, as in the simpler σ only diagram.
- The next higher set consists of the eight π donor orbitals of the ligand.
- Their interaction with the metal orbitals is small and has the effect of decreasing the energy difference between the orbitals of the next higher set.
- The third set of MO's is primarily metal d orbitals, modified by interaction with the ligand orbitals.
- The b2g, eg and a1g orbitals are all low and have small differences in energy whereas the b1g orbital has a much higher energy.
- Eight electrons from the ligands form the σ bonds and the next sixteen π electrons can either π bond or remain essentially non-bonding, and the remaining electrons from the metal occupy the third set.

MO description of σ only bonding in a T_d transition metal complex

- The σ bonding orbitals for tetrahedral ($T_{\rm d}$) complexes are easily determined on the basis of symmetry.
- The reducible representation of ligand bonding orbitals includes A_1 and T_2 allowing for a total of four bonding MO's.
- The energy level picture for the $T_{\rm d}$ d orbitals is inverted wrt the $O_{\rm h}$ picture, also the LFSE is now called $\Delta_{\rm t}$ and is typically smaller than $\Delta_{\rm o}$.

MO description of σ only bonding in a T_d transition metal complex

π bonding in T_d transition metal complexes

- The π bonding orbitals for tetrahedral (T_d) complexes are more difficult to visualize.
- The reducible representation of π bonding ligand orbitals includes A_1 , T_1 , T_2 and E.
- T_1 has no matching metal orbitals, E matches dz² and dx²-y², and T_2 matches dxy, dxz, and dyz metal orbitals.
- The E and T_2 interactions lower the energy of the bonding orbitals, and raise the corresponding anti-bonding orbitals, for a net increase in Δ_t .

d	E	$8C_{3}$	$3C_2$	$6S_4$	$6\sigma_d$		
1	1	1	1	1			$x^2 + y^2 + z^2$
2	1	-1	1	-1			
	2	-1	2	0			$(2z^2-x^2-y^2,x^2-y^2)$
	3	0	-1	1		(R_x, R_y, R_z)	
2	3	0	-1	-1		$(R_x, R_y, R_z) (x, y, z)$	(xy, yz, xz)

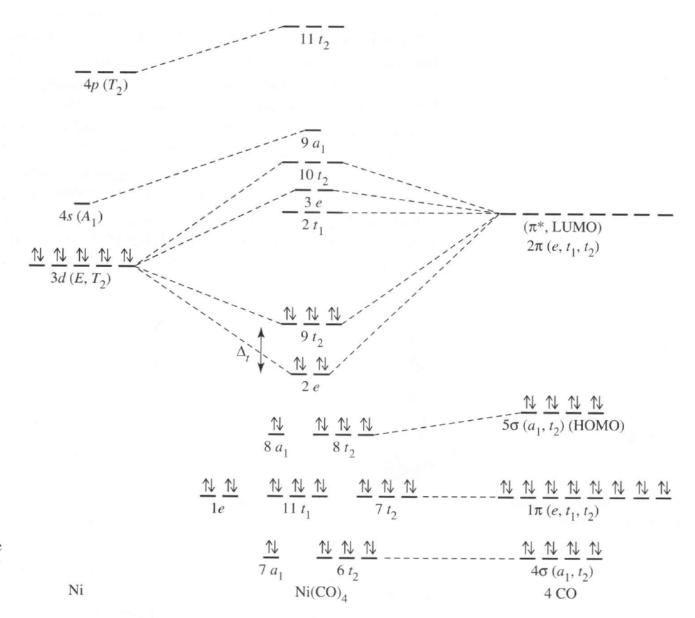


FIGURE 10-18 Molecular Orbitals for Tetrahedral Ni(CO)₄. C. W. Bauschlicher, Jr., and P. S. Bagus, *J. Chem. Phys.*, 1984, 81, 5889, argue that there is almost no σ bonding from the 4s and 4p orbitals of Ni, and that the d¹⁰ configuration is the best starting place for the calculations, as shown here. G. Cooper, K. H. Sze, and C. E. Brion, *J. Am. Chem. Soc.*, 1989, 111, 5051, include the metal 4s as a significant part of σ bonding, but with essentially the same net result in molecular orbitals.

- For Ni(CO)4 the interactions of the CO σ and π ligand orbitals with the metal orbitals are probably small.
- Much of the bonding is from $M \rightarrow L$ p bonding.
- In cases in which the d orbitals are not fully occupied, s bonding is likely to be more important, with resulting shifts of the a_1 and t_2 orbitals to lower energy and the 4s and 4p orbitals to higher energies.