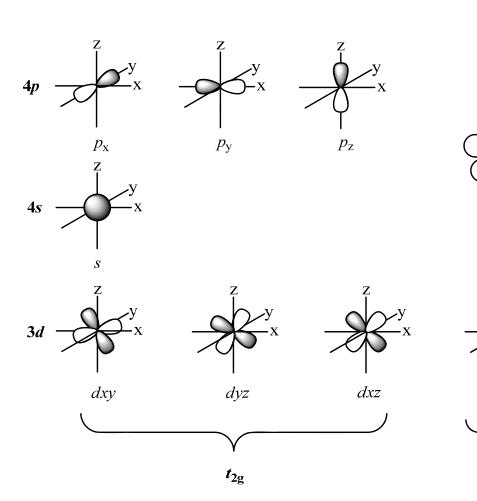
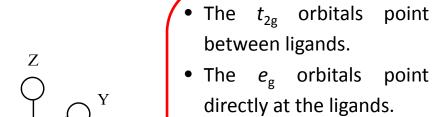
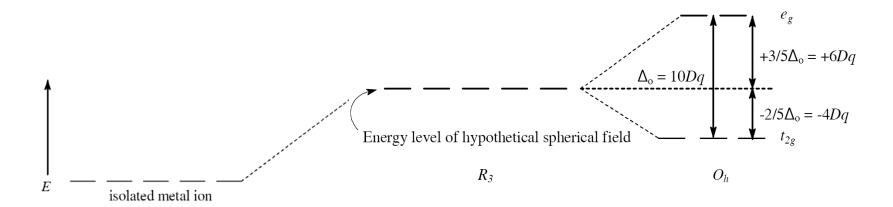

Crystal Field Splitting in Octahedral Transition Metal Complexes


d-Subshell Splitting in an O_h Field

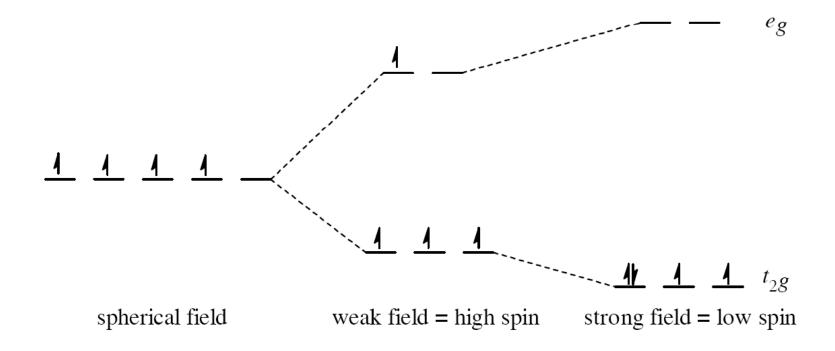

- In the octahedral (O_h) environment of three acac ligands, the fivefold degeneracy among the d orbitals in Mn³⁺ is lifted.
- To a first approximation, the ligand field is of O_h symmetry, and the 3d orbitals will separate into a set of three degenerate orbitals ($t_{2g} = dxy$, dyz, dxz) and a set of two degenerate orbitals ($e_g = dx^2 y^2$, dz^2).

• Relative to the energy of the hypothetical spherical field, the $e_{\rm g}$ set will rise in energy and the $t_{\rm 2g}$ set will fall in energy, creating an energy separation of $\Delta_{\rm o}$ or 10 Dq between the two sets of d orbitals.



 dx^2 - dy^2

• Thus, the t_{2g} set is stabilized and the e_{g} set is destabilized (relative to the energy of a hypothetical spherical octahedral field).


- The energy increase of the $e_{\rm g}$ orbitals and the energy decrease of the $t_{\rm 2g}$ orbitals must be balanced relative to the energy of the hypothetical spherical field (aka the barycenter).
- The energy of each of the two orbitals of the $e_{\rm g}$ set rises by +3/5 $\Delta_{\rm o}$ (+6 Dq) while the energy of each of the three $t_{\rm 2g}$ orbitals falls by -2/5 $\Delta_{\rm o}$ (-4 Dq).
- This results in no net energy change for the system:

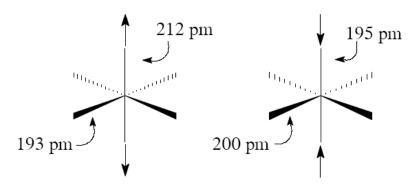
$$\Delta E = E(e_g) + E(t_{2g})$$

= (2)(+3/5 Δ_o) + (3)(-2/5 Δ_o)
= (2)(+6Dq) + (3)(-4Dq) = 0

(The magnitude of Δ_o depends upon both the metal ion and the attaching ligands)

High-Spin and Low-Spin Configurations

- In an octahedral complex, electrons fill the t_{2g} and e_{g} orbitals in an aufbau manner, but for configurations d^4-d^7 there are two possible filling schemes depending on the magnitude of Δ_{o} relative to the *mean pairing energy*, P.
- A high-spin configuration avoids pairing by spreading the electrons across both the $t_{\rm 2g}$ and $e_{\rm g}$ levels.
- A *low-spin configuration* avoids occupying the higher energy $e_{\rm g}$ level by pairing electrons in the $t_{\rm 2g}$ level.
- For a given metal ion, the pairing energy is relatively constant, so the spin state depends upon the magnitude of the field strength, $\Delta_{\rm o}$.
- Low field strength results in a high-spin state.
- High field strength results in a low-spin state.
- For a d^4 configuration, the high-spin state is $t_{2g}^3 e_g^1$, and the low-spin state is $t_{2g}^4 e_g^0$.


- Low field strength results in a high-spin state.
- High field strength results in a low-spin state.
- For a d^4 configuration, the high-spin state is $t_{2g}^3 e_g^1$, and the low-spin state is $t_{2g}^4 e_g^0$.
- Mn(acac)₃ is a weak-field/high-spin case with the configuration $t_{2g}^{3}e_{g}^{1}$.

Jahn-Teller Distortion

- Jahn-Teller Theorem: For any nonlinear system in a degenerate state, a distortion will occur that will lift the degeneracy.
- Mn(acac)₃ has a 5E_g ground state, which has an imbalance in the filling of electrons in orbitals that point directly at ligands.

$$(t_{2g})^3 (dx^2-y^2)^1 (dz^2)^0$$
 or $(t_{2g})^3 (dx^2-y^2)^0 (dz^2)^1$

- This results in significant distortion from ideal octahedral symmetry (O_h).
- Jahn-Teller Corollary: If the system is centrosymmetric, the distorted configuration will also be centrosymmetric.
- For Mn(acac)₃ this suggests tetragonal distortion, $O_h \rightarrow D_{4h}$.
- Most probable distortions are equally elongating or shortening two trans-related positions, relative to the four remaining equal positions in a plane. Mn(acac)₃ exists in two tetragonally distorted forms.

State Splitting in an Octahedral Field

- In the absence of the octahedral field (point group R_3), the ground state of a $3d^4$ configuration is 5D .
- A weak O_h field causes this to split into two states:

Ground state: ${}^5E_g = t_{2g}{}^3 e_g{}^1$

Excited state: ${}^5T_{2g} = t_{2g}{}^2e_g{}^2$

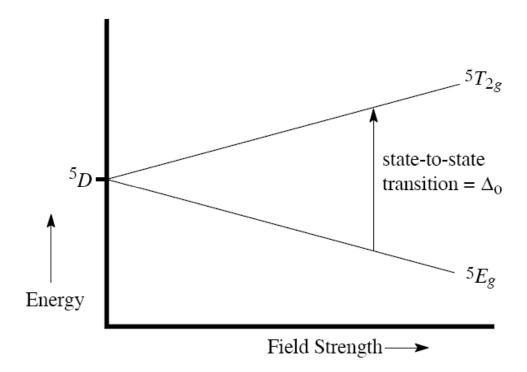
• The 5E_g ground state is doubly-degenerate, because there are two ways of placing the $e_g{}^1$ electron:

 $(t_{2g})^3 (dx^2-y^2)^1 (dz^2)^0$

 $(t_{2g})^3 (dx^2-y^2)^0 (dz^2)^1$

• The ${}^5T_{2g}$ excited state is triply degenerate, because there are three ways of placing the vacant orbital:

 $(dxy)^{1}(dyz)^{1}(dxz)^{0}(e_{g})^{2}$


 $(dxy)^{1}(dyz)^{0}(dxz)^{1}(e_{g})^{2}$

 $(dxy)^{0}(dyz)^{1}(dxz)^{1}(e_{g})^{2}$

• ${}^{5}E_{\rm g}$ state is paramagnetic from four unpaired electrons.

Absorption Spectra and State-to-State Transitions

- When a transition metal complex absorbs visible light, the energy absorbed (h<) causes a transition from the ground state to an excited state, corresponding to a change in electronic configuration.
- For a high-spin d^4 complex like Mn(acac)₃, only one same-spin state-to-state transition is possible: ${}^5E_g \rightarrow {}^5T_{2g}$
- The ${}^5E_{\rm g} \rightarrow {}^5T_{\rm 2g}$ gives rise to a single absorption band in the visible spectrum at ${}^\sim$ 500 nm, absorbing red-orange light and transmitting green light.

Mn(acac)₃ Synthesis

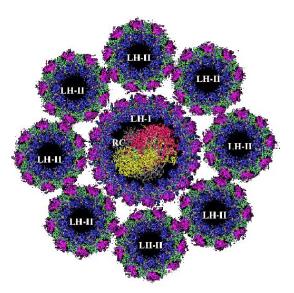
• Manganese (Z = 25) has a valence configuration [Ar] $4s^23d^5$, and typically shows positive oxidations states of +2, +3, and +7, all of which are seen in this experiment.

MnCl ₂ .4H ₂ O	Mn(II)	[Ar]3 <i>d</i> ⁵	pale pink
Mn(acac) ₃	Mn(III)	[Ar]3 <i>d</i> ⁴	lustrous dark brown
KMnO ₄	Mn(VII)	[Ar]	deep purple

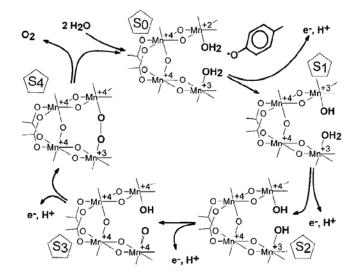
- Pale color of $MnCl_{2\cdot 4}H_2O$ is due to the absence of any *spin-allowed d-d* transitions for a d^5 high-spin complex.
- Mn(acac)₃ is green by transmitted light, owing to a single broad d-d transition at about 500 nm.
- KMnO₄ is deep purple, owing to a *ligand-to-metal charge-transfer (LMCT)* transition with high molar absorptivity.

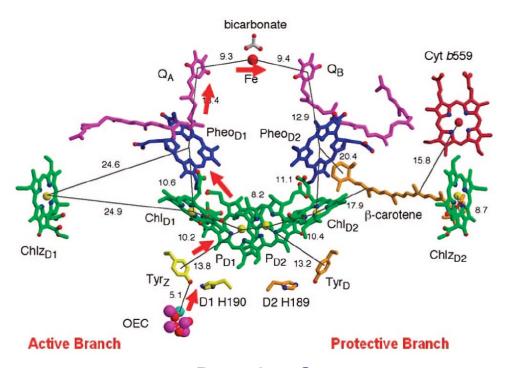
Procedure Notes

- Two-step preparation.
- Make certain that all $KMnO_4$ is dissolved before adding to the solution in the second step.
- Use filter paper /Büchner funnel or Hirsh funnel for first crude product collection (not sintered glass).
- Crude product is obtained by chilling the final mixture.
- Pure product is obtained by recrystallization from benzene solution on adding petroleum ether.
- Filter benzene solution through a sintered glass filter that is already discolored brown.
- Discard all solutions (esp., benzene/petroleum ether mixture) in waste containers (nothing down the drain).


$$MnCl_2(aq) + 2Hacac(aq) + 2NaC_2H_3O_2(aq) \rightarrow Mn(acac)_2(aq) + 2NaCl(aq) + 2HC_2H_3O_2(aq)$$

$$4Mn(acac)_2 + KMnO_4(aq) + 7Hacac(aq) + HC_2H_3O_2(aq) \rightarrow 5Mn(acac)_3(s) + KC_2H_3O_2(aq) + 4H_2O(l)$$


- The ligand *acetylacetonate* (*acac*) is the anion of acetylacetone (aka 2,4-pentanedione; Hacac) produced in-situ by deprotonation with an acetate base.
- In Mn(acac)₃ the Mn³⁺ centre is ligated by three surrounding acac ligands in an octahedral geometry (point group: $D_3 \rightarrow pseudo\ O_h$ symmetry).


Photosynthesis

($6CO_2 + 6H_2O + hv \rightarrow (CH_2O)_6 + 6O_2$)

Light-Harvesting (energy transfer)

Reaction Center (charge separation via e- transfer)

H₂O oxidation by OEC via proton-coupled e⁻ transfer (dark reaction)