Chromium(III) Chloride

 $CrCl_3 \cdot 6H_2O$

anhydrous CrCl₃

Obtaining Non-hydrated Metal Halides

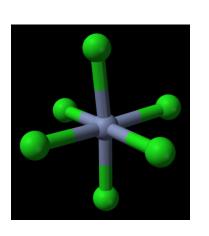
- Many ionic metal halides and other ionic salts are hydrated with a specific number of water molecules per formula unit.
- Water molecules may occupy specific sites within the crystal lattice or may be directly coordinated to the cation.

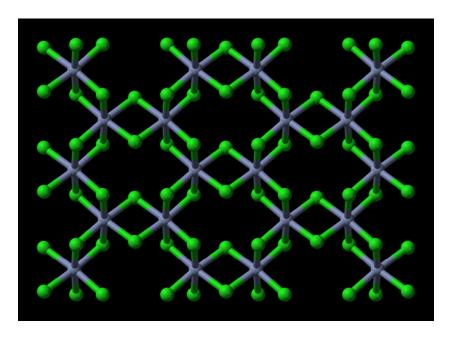
CaCl ₂ ·2H ₂ O	lattice H ₂ O
BeCl ₂ ·4H ₂ O	coordinated H ₂ O
CrCl₃·6H₂O	coordinated H ₂ O
CuSO ₄ ·5H ₂ O	lattice H ₂ O + coordinated H ₂ O

 Salts with lattice waters of hydration can often be dehydrated by simply heating or heating in vacuum.

$$CaCl_2 \cdot 2H_2O + \Delta \rightarrow CaCl_2 + 2H_2O$$

- Salts with coordinated water usually decompose to a mixture of oxides or oxohalides, often with no specific stoichiometry.
- Sometimes anhydrous halides can be formed from the hydrated salts by chemically destroying the water of hydration with a reagent such as thionyl chloride.


$$[Cr(H_2O)_6]Cl_3 + 6SOCl_2 + \Delta \rightarrow CrCl_3 + 12 HCl + 6SO_2$$


• An alternative approach is to use either the metal or metal oxide and a halogenating agent at high temperature; e.g.,

$$Cr_2O_3 + 3CCl_4 + \Delta \rightarrow 2CrCl_3 + 3COCl_2$$

This is the method used in today's synthesis.

Structure of CrCl₃

- *CrCl₃ is not ionic*, but rather has a network solid structure with bridged Cl⁻ ions and octahedrally coordinated Cr(III) ions, which form layers.
- Although CrCl₃·6H₂O is green, solid CrCl₃ is purple.
- The solid consists of shiny flakes, owing to its layered structure.
- The stability of the network structure makes CrCl₃ *insoluble in water* and most other solvents.

Notes on Synthesis

- The reaction is carried out at 700 °C in a Vycor (quartz) tube in a tube furnace.
- Nitrogen is bubbled through liquid CCl_4 , and the stream of N_2/CCl_4 is passed over a pile of green Cr_2O_3 in the center of the tube.
- As CrCl₃ is formed it sublimes and is carried in the nitrogen stream to the cooler far end of the tube, where it condenses.
- A by product of the reaction is poisonous phosgene gas, COCl₂.

$$Cr_2O_3 + 3CCl_4 + \Delta \rightarrow 2CrCl_3 + 3COCl_2$$

Be sure the fume hood is working properly!

- Adjusting the $N_2(g)$ flow rate and maintaining a consistent flow of CCl_4 is critical to successful synthesis.
- Too slow a rate will cause the reaction to take excessively long time.
- Too fast a rate causes product to be blown out the end of the tube without condensing. (Watch for wisps of white smoke.)
- The reaction proceeds until nearly all of the Cr₂O₃ in the center of the tube is gone, about 3 hours.
- If available, product from previous years will be provided for you to carry out the confirming tests, rather than waiting for your own product.