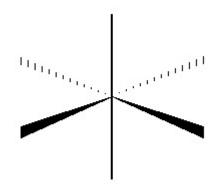
Ligand Field Theory

- Quantitative results of CFT, based solely on electrostatic considerations, require correction to give satisfactory agreement with experiment.
 - When empirical corrections are added to CFT it is known as Ligand Field Theory (LFT).
- Need for corrections to CFT arise from metal-ligand orbital overlap, implying some degree of covalent M–L bonding.
 - Observed absorption spectra suggest there is less interaction between *d* electrons in a complex ion than in the free gaseous ion.
 - Covalent M–L interaction allows metal electrons to be somewhat delocalized onto the ligand.
 - This delocalization results in lesser energy separation between the Russell-Saunders term states in the complex than predicted for the ion in the crystal field environment.
 - On the basis of the CFT model, $M\rightarrow L$ interaction has the effect of "expanding" the d orbitals.


The Nephelauxetic Effect

- The disparity between free-ion and complex-ion electronic state energies is the so-called *nephelauxetic effect* (Gk., *nephele* = cloud + *auxesis* = growth; hence, "cloud-expanding"), which depends upon both the metal ion and ligand.
 - For a given metal ion, the ability of ligands to induce this cloud expanding increases according to a *nephelauxetic series*:

$$F^- < H_2O < NH_3 < en < ox < SCN^- < Cl^- < CN^- < Br^- < I^-$$

- Note that the ordering of ligands in the nephelauxetic series is not the same as the spectrochemical series.
- By using empirically determined constants for both ligands and the central metal ion it is possible to reconcile the ligand field model of a complex with quantitative spectroscopic results.
 - The need to modify CFT to account for the nephelauxetic effect suggests that a molecular orbital approach might be useful.
 - An MO model could be adjusted for various degrees of M-L orbital overlap, representing a range from polar covalent bonding to nearly ionic interactions.
 - An MO approach might allow us to understand the relationship between orbital overlap and the energy separations among *d* orbitals in fields of various geometries.

Sigma-only MOs for $ML_6(O_h)$

Pendant Atom SALCs:

Thus, we can define six SALCs with three different symmetries, which can form bonding and antibonding combinations with like symmetry AOs on the central metal ion.

AOs on M:

$$s = a_{1g}$$
 $(p_x, p_y, p_z) = t_{1u}$ $(d_{x^2-y^2}, d_{z^2}) = e_g$ $(d_{xy}, d_{xz}, d_{yz}) = t_{2g}$

- \odot The symmetries of the d orbitals are, of course, the same as noted in our considerations of CFT.
- $s, p_x, p_y, p_z, d_{x^2-y^2}, d_{z^2}$ orbitals have the proper symmetries to form bonding and antibonding combinations with matching symmetry SALCs.
- The three t_{2g} orbitals (d_{xy}, d_{xz}, d_{yz}) have no matching SALCs and must remain nonbonding. This is a consequence of the orientation of these orbitals relative to the ligands.

SALC Equations

$$\Sigma_a = \frac{1}{\sqrt{6}} (\sigma_x + \sigma_{-x} + \sigma_y + \sigma_{-y} + \sigma_z + \sigma_{-z})$$

$$e_{g} \qquad \Sigma_{z^{2}} = \frac{1}{2\sqrt{3}} (2\sigma_{z} + 2\sigma_{-z} - \sigma_{x} - \sigma_{-x} - \sigma_{y} - \sigma_{-y})$$

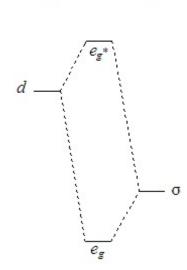
$$\Sigma_{x^{2}-y^{2}} = \frac{1}{2} (\sigma_{x} + \sigma_{-x} - \sigma_{y} - \sigma_{-y})$$

$$\Sigma_{z} = \frac{1}{\sqrt{2}} (\sigma_{z} - \sigma_{-z})$$

$$\Sigma_{x} = \frac{1}{\sqrt{2}} (\sigma_{x} - \sigma_{-x})$$

$$\Sigma_{y} = \frac{1}{\sqrt{2}} (\sigma_{y} - \sigma_{-y})$$

ML₆ Sigma-Only MO Scheme

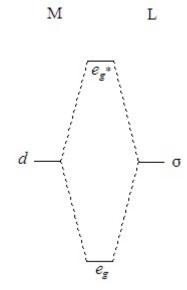

Sigma-Only Model of ML₆

- The twelve electrons provided by the ligands alone fill the lowest three levels of MOs $(a_{1g}, t_{1u}, \text{ and } e_g)$.
- Any electrons provided by the metal ion will result in an equivalent filling of the t_{2g} level and if necessary the e_g level.
 - Electron filling above the six MOs in the lowest three levels is identical to the presumed filling of *d* orbitals in the CFT model.
- As with the CFT model, both high and low spin ground states are possible for d^4 through d^7 metal ion configurations.
- In the MO scheme Δ_0 or 10Dq is defined as the energy separation between the t_{2g} and e_g * levels.
 - The lower t_{2g} orbitals are nonbonding and can be taken as essentially the d_{xy} , d_{xz} , and d_{yz} orbitals of the metal ion, which is not materially different from the CFT view.
 - The upper e_g * orbitals are now seen as antibonding molecular orbitals.
 - Although antibonding, the e_g * MOs when occupied involve sharing of electron density between the metal ion and the ligands.

Adjustments for Covalence

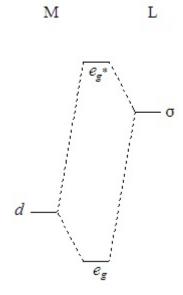
- We can make allowances for varying degrees of covalent interaction between the metal ion and ligands by adjusting the MO scheme.
 - No adjustment of the scheme can change the localized character of the t_{2g} orbitals.
- Electrons occupying the e_g * MO will have more or less delocalization onto the ligands depending upon the relative energies of the metal ion d orbitals and the ligand sigma orbitals.
 - If metal d orbitals lie higher in energy than ligand sigma orbitals, the e_g * MOs will lie closer to the metal d orbitals and have more metal ion character than ligand character.

L



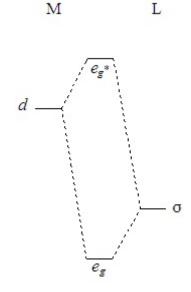
M

- In this case, e_g^* electron density will be more localized on the metal.
- If the disparity in levels is extreme, this becomes an ionic model in which the e_g^* MOs are essentially metal d orbitals, like the CFT approach.
- Thus, the CFT model is a special case in the MO approach.


Adjustments for Covalence

- As the energies of the metal ion *d* orbitals and the ligand *sigma* orbitals become more comparable the degree of electron sharing (covalence) will become greater.
 - More of the e_g^* electron density will be delocalized toward the ligands.

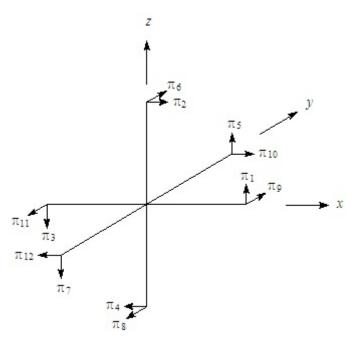
Adjustments for Covalence


• If the ligand sigma orbitals were to lie significantly higher than the metal ion d orbitals, e_g * electron density would be predominantly localized on the ligands.

MO Interpretation of Nephelauxetic Effect Sigma-Only Case

$$F^- < H_2O < NH_3 < en < ox < SCN^- < Cl^- < CN^- < Br^- < I^-$$

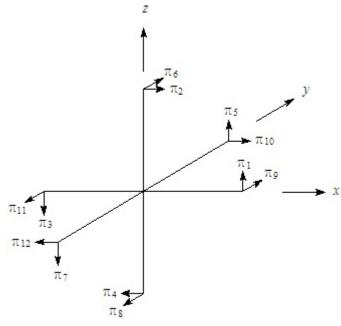
- The weakest ligands in the nephelauxetic series (F⁻, H₂O, and NH₃) have low energy atomic or molecular orbitals relative to transition metal ion *d* orbitals.
 - This is more in keeping with the "quasi-ionic" model:


For complexes with these ligands, both t_{2g} and e_g * electron density is essentially localized in metal d orbitals, not unlike the assumptions of the CFT model.

CFT vs. MO - Sigma Only Case

- MO is capable of better quantitative agreement without fundamentally changing the model.
- Electron filling in the MO model in the highest occupied MOs is the same as in the CFT model:
 - Orbital symmetries are the same.
 - Orbital ordering is the same.
 - Electron filling is the same.
 - Δ_0 is defined as the gap between the same symmetry orbital levels.
 - For qualitative purposes (electronic configurations, magnetic properties, qualitative visible spectra interpretation) CFT is equivalent to MO and is easier to apply.
 - **◎** The qualitative agreement between CFT and MO is general.

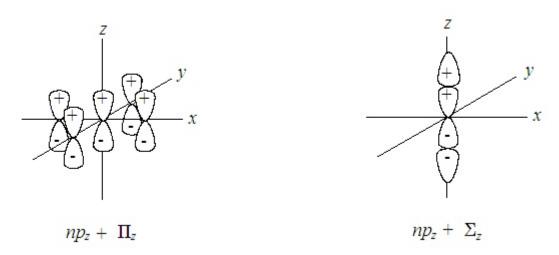
ML₆ Complexes with Pi Bonding


To include *pi* bonding in our MO scheme for octahedral ML₆ complexes we use the following twelve vectors as a basis for a representation of SALCs.

• These vectors might indicate

- Occupied p orbitals (other than those engaged in *sigma* bonding), such as the np_x and np_y orbitals on halide ligands in complexes like CrX_6^{3-} (X = F⁻, Cl⁻).
- These are classified as *donor ligands*, because they have electrons to contribute to the *pi* system of the complex.
- Other unoccupied pi symmetry AOs or MOs on the ligands, such the empty π^* antibonding MOs of CO and CN⁻ in complexes like $Cr(CO)_6$ and $[Fe(CN)_6]^{4-}$.
- These are classified as *acceptor ligands*, since they receive electron density from the *pi* system.

Representation for Pi-SALCs

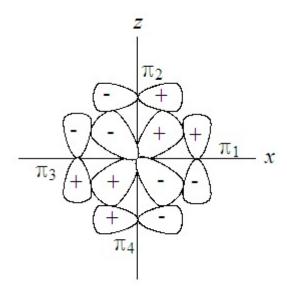


$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

Matching Γ_{π} with Metal AOs

$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

- T_{2g} : Can form pi-bonding and antibonding combinations between the t_{2g} orbitals (d_{xy}, d_{xz}, d_{yz}) and T_{2g} π -SALCs.
 - This will change the character of the t_{2g} level, which we previously had identified as nonbonding in the sigma-only MO scheme.
- T_{1u} : Can form pi-bonding and antibonding combinations between the three np orbitals (t_{1u}) and the three T_{1u} SALCs.
 - However, we have already used these metal ion np AOs to form bonding and antibonding σ -MOs with the T_{1u} σ -SALCs.
 - The *sigma* interactions are likely to result in more effective overlaps

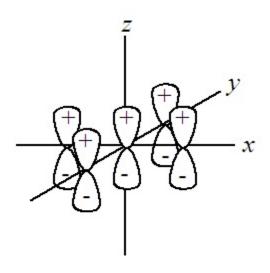


Assume that the np orbitals have only minimally effective interactions with the T_{1u} π -SALCs; i.e. virtually nonbonding or only weakly bonding in certain complexes.

 T_{1g} and T_{2u} : No AO matches, so strictly nonbonding.

T_{2g} SALCs and Their Pi-Bonding LCAOs

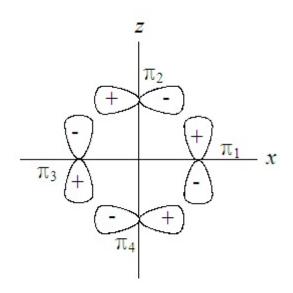
$$\begin{split} & \Pi_{xz} = \frac{1}{2}(\pi_1 + \pi_2 + \pi_3 + \pi_4) \\ & \Pi_{yz} = \frac{1}{2}(\pi_5 + \pi_6 + \pi_7 + \pi_8) \\ & \Pi_{xy} = \frac{1}{2}(\pi_9 + \pi_{10} + \pi_{11} + \pi_{12}) \end{split}$$



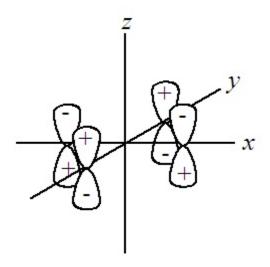
$$d_{xz} + \prod_{xz}$$

Similar matches with the other two SALCs.

Virtually Nonbonding T_{1u} SALCs


$$\begin{split} & \Pi_z = \frac{1}{2}(\pi_1 - \pi_3 + \pi_5 - \pi_7) \\ & \Pi_x = \frac{1}{2}(\pi_2 - \pi_4 + \pi_{10} - \pi_{12}) \\ & \Pi_y = \frac{1}{2}(\pi_6 - \pi_8 + \pi_9 - \pi_{11}) \end{split}$$

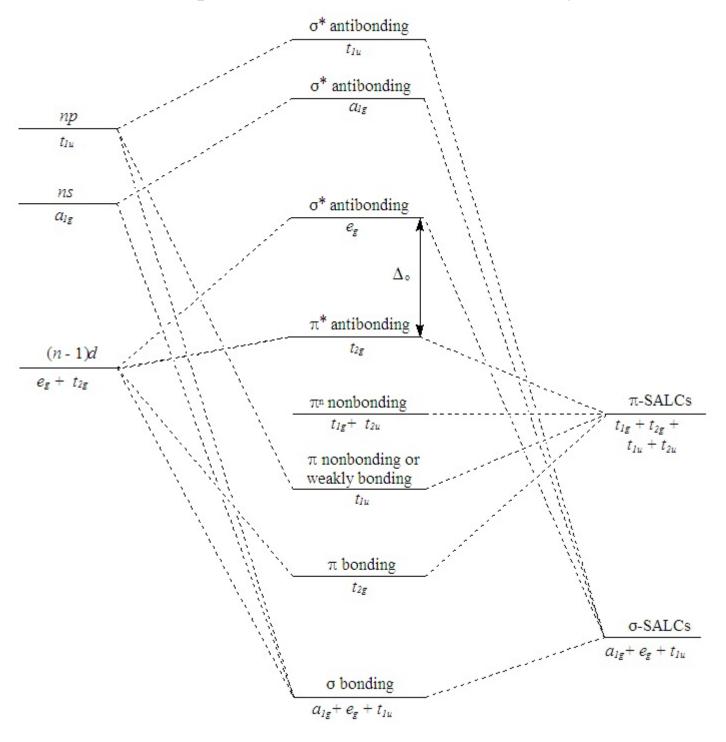
$$p_z + \prod_z$$


Similar matches with the other two SALCs.

Strictly Nonbonding T_{1g} and T_{2u} SALCs

 $T_{1g}(xz)$

Similar form for the other two SALCs.


 $T_{2u}(z)$

Similar form for the other two SALCs.

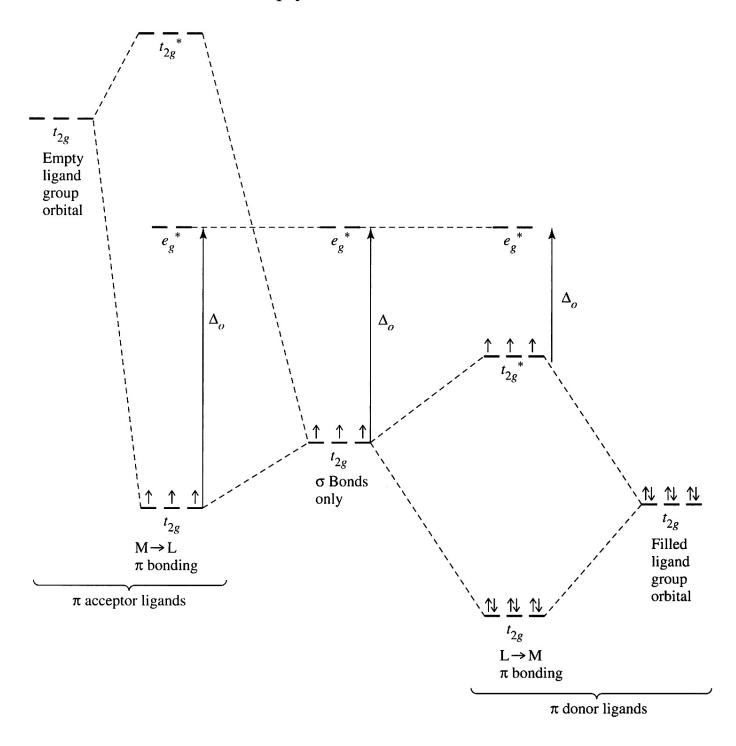
Impediments to Forming a General MO Scheme

- The energy ordering and the nature of the MOs will be affected by the following factors:
 - Identity of the central metal ion
 - Identity of the ligands
 - Relative energies of the orbitals on metal and ligands
 - The nature and effectiveness of the *sigma* and *pi* orbital interactions
 - Electron filling in ligand orbitals
 - **⊗** It is not possible to construct a detailed MO scheme that will have general applicability to a range of octahedral complexes.
- The best we can hope for is a simplified scheme that identifies interacting orbitals by symmetry type, approximates their bonding type, and arranges MOs of the same type in a plausible relative energy order.
 - The simplified scheme makes no attempt to distinguish between the energies of same-type orbitals with different symmetries.

Simplified General MO Scheme for ML₆

Example: CrF₆³⁻

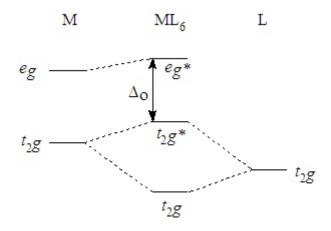
- Cr^{3+} ion has a d^3 configuration, and therefore supplies three electrons.
- Assuming that the 2s electrons are nonbonding, each F⁻ ion supplies six electrons, making a total of 36 electrons from ligands.


Thus, we should fill our scheme with 39 electrons.

- Thirty-six electrons are sufficient to fill all levels through the nonbonding t_{1g} and t_{2u} MOs.
- The remaining three electrons occupy individual t_{2g} π^* MOs, resulting in a configuration $(t_{2g}^*)^3$, equivalent to the CFT model's configuration t_{2g}^3 .

- Δ_0 is defined as the energy gap between the pi antibonding t_{2g}^* level and the sigma antibonding e_g^* level.
- The energies of the t_{2g}^* and e_g^* levels will be sensitive to differences in the effectiveness of metal-ligand pi and sigma interactions, respectively.
 - The interplay between *sigma* and *pi* bonding strength affects the magnitude of Δ_0 .
 - The relative abilities of a ligand to engage in *sigma* and *pi* bonding help determine its position in the spectrochemical series.

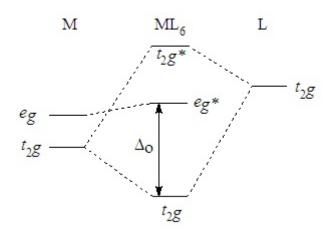
Effect of π Interactions on Δ_0


• The effect of π interactions on Δ_o depends upon the energies of the ligand MOs relative to metal d orbitals, and also on whether the ligand π orbitals are filled or empty.

Effect of π Interactions on $\Delta_o - L \rightarrow M \pi$ Bonding

M $d(t_{2g}) > L$ π-SALC (t_{2g}) and ligand orbitals (t_{2g}) bonding) filled Case I: $(\pi$ -donor ligands). [above right]

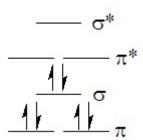
- t_{2g} π -bonding MOs are filled (6*e*). $t_{2g}^*(\pi^*)$ and $e_g^*(\sigma^*)$ filling corresponds to *d* filling in CFT model.



- As π interaction increases, t_{2g} bonding becomes more stable and t_{2g}^* is squeezed towards e_g^* , making Δ_o smaller.
 - This is probably the situation with monatomic filled-subshell ligands such as O²⁻, F⁻, etc.
 - This is described as ligand-to-metal (L \rightarrow M) π bonding.

Effect of π Interactions on $\Delta_o - M \rightarrow L \pi$ Bonding

Case II: M $d(t_{2g}) < L \pi$ -SALC (t_{2g}) and ligand orbitals (t_{2g}) bonding not filled $(\pi$ -acceptor ligands). [above left]


- $\bullet \ \Delta_{o} = t_{2g}(\pi) \leftrightarrow e_{g}^{*}(\sigma^{*})$
- t_{2g} π -bonding MOs are filled as d filling in CFT model.
- e_g^* σ -antibonding MOs are filled (or empty) as d filling in CFT model.
- t_{2g}^* antibonding MOs are not filled

- As π interaction increases, t_{2g} π -bonding becomes more stable relative to e_g^* σ -antibonding, making Δ_o larger.
 - This is probably the situation with ligands such as PH_3 and AsH_3 , which use empty d orbitals on the central atom for π interactions.
- When both empty and filled ligand π orbitals are involved in the bonding the effect on Δ_o is less predictable.

CO, CN⁻, NO⁺, N₂ Ligands

- CO, CN⁻, NO⁺, and N₂ are isoelectronic species that have both σ and π M–L interactions.
 - All have empty π^* MOs.

• The σ MO is the HOMO, which donates to the metal ion, forming L \rightarrow M σ bonds (t_{1u} σ MOs).

• Partially filled t_{2g} metal d orbitals "back-bond" to the π^* MO on the ligand, forming M \to L π bonds (t_{2g} π MOs).

- The back-bonding stabilizes the π bonding MOs of the complex, making large Δ_0 .
 - CO, CN⁻, NO⁺, and N₂ are strong-field ligands.
- Increased electron density in the ligand π^* MO weakens the C–O bond, causing a shift in the stretching vibration to lower frequency.

	CO	Ni(CO) ₄	$Co(CO)_4^-$	Fe(CO) ₄ ²⁻
v_{CO} (cm ⁻¹)	2143	2060	1890	1790
$\mathbf{M}^{n\pm}$		0	-1	-2

Sigma and Pi Bonding in T_d ML₄ Complexes

Assumptions:

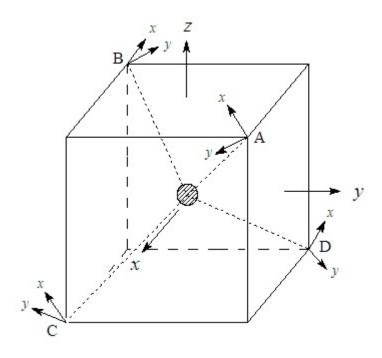
- Each of the ligands possesses one or more *sigma* orbitals directed at the central metal ion and pairs of *pi* orbitals perpendicular to the M-L bond axis.
- Ligands are monatomic ions, such as halide ions, which could use ns and np_z orbitals for sigma interactions and np_x and np_y orbitals for pi interactions with the metal ion (n-1)d, ns, and np orbitals.
 - For simplicity, assume that ligand *ns* orbitals are essentially nonbonding.
 - Assume only *np* orbitals have significant overlap with the metal ion orbitals.

Symmetry of M AOs:

$$s = a_1$$

 $p_x, p_y, p_z = t_2$
 $d_{x^2-y^2}, d_{z^2} = e$
 $d_{xy}, d_{xz}, d_{yz} = t_2$

Once again, the symmetries of the d orbitals are the same as we noted in the CFT approach.


Sigma SALC Representation and MOs

• Same as sigma SALCs of hydrogens in methane.

$$\Gamma_{\sigma} = A_1 + T_2$$

- The A_1 σ -SALC has appropriate symmetry to form *sigma* combinations with metal *ns* orbitals, although the effectiveness of the overlap may be limited.
- The T_2 σ -SALCs have appropriate symmetry to form *sigma* combinations with np_z , np_v , and np_x orbitals on the metal ion.
 - However, the d_{xz} , d_{yz} , and d_{xy} orbitals also have T_2 symmetry and can likewise form combinations with these SALCs.
 - There may be some degree of d-p mixing in the t_2 σ -MOs.
 - In constructing our MO scheme we will assume, for simplicity, that the t_2 σ -MOs are formed principally with the metal np orbitals, although d-p mixing may be appreciable in specific complexes.

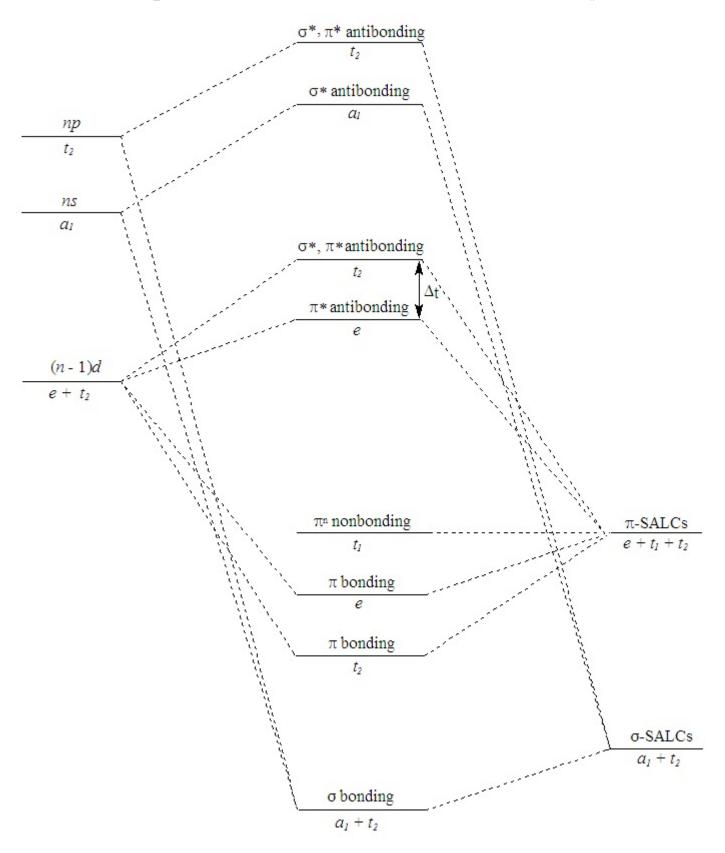
Pi SALCs Representation

• Only the operations E, $8C_3$ (= $4C_3 + 4C_3^2$) do not move the eight vectors off their positions.

All other characters are 0 in Γ_{π} .

• The character for each pair of vectors perpendicular to a three-fold axis is given by the operator matrix in the expression

$$\begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$


$$\chi(C_3) = -1$$

Pi SALCs and MOs

$$\Gamma_{\pi} = E + T_1 + T_2$$

- The T_1 SALCs have no match in metal atom AOs and will be nonbonding.
- The *E* SALCs will form pi combinations with the $d_{x^2-y^2}$ and d_{z^2} orbitals on the metal atom.
- The T_2 π -SALCs, like the T_2 σ -SALCs, can potentially form combinations with both t_2 (n-1)d and np orbitals on the metal atom.
 - The π -MOs that are formed may involve some degree of d-p mixing.
- We have assumed that the t_2 σ -MOs mainly use the np orbitals.
 - We will assume that the t_2 π -MOs are formed principally with the metal (n-1)d orbitals; i.e., d_{xy} , d_{yz} , d_{yz} .
- The distinction between t_2 σ -MOs and t_2 π -MOs is not as clean as we might like.
 - None of the metal t_2 orbitals is directed at ligands (the ideal orientation in sigma bonding).
 - None of the metal t_2 orbitals is oriented at right angles to the bond axis (the ideal orientation in pi bonding).
 - Therefore, each type of MO has some of the character of the other type in this case.
 - For simplicity, we will assume that the bonding t_2 MOs are either essentially sigma or pi, and that the mixing is more pronounced in the antibonding MOs.

Simplified Qualitative MO Scheme for $ML_4(T_d)$

Equivalence of CFT and MO Models of $ML_4(T_d)$

Example: NiCl₄²⁻

- The four Cl⁻ ligands supply six electrons each, for a total of 24.
- Ni^{2+} is a d^{8} ion, so the total number of electrons is 32.
- Twenty-four electrons will fill all lower levels through the t_1 nonbonding level in our scheme.
- The remaining eight electrons will fill the antibonding e and t_2 levels, giving a configuration $(e^*)^4(t_2^*)^4$.
 - The two unpaired electrons in the upper t_2 * orbitals make the complex paramagnetic.
 - This is equivalent to the CFT configuration $e^4t_2^4$.
- Like the CFT model, Δ_t is defined in the MO model as the energy separation between the antibonding e^* and t_2^* MOs.
 - Like the octahedral case, the essential parameters of the CFT model are similarly defined in the MO model.