

Redox reaction

- Redox = reduction and oxidation
 - The reaction involves electron transfer from one reactant to another – the oxidation state of the elements has to be changed.
- $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$
 - Cu²⁺ gaining two electrons is oxidizing agent, being reduced.
 - Zn losing two electrons is reducing agent, being oxidized.
- Faraday constant:
 - The unit of electric charge is coulombs (C).
 - One electron has 1.602 x 10⁻¹⁹ C
 - One mole of electron has 96500 C of charge F=96500C/mol

Redox Titration

 Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant.

$$+2e [2 I(0) \rightarrow 2 I(-1)]$$

$$2 S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2 I^{-1}$$

$$-2e [4 S(+2) \rightarrow 4 S(+2.5)]$$

Calculation in Lab

$$OH$$
 + $3Br_2$ \rightarrow Br + $3HBr$

$$BrO_3^- + 5 Br^- + 6 H^+ = 3 Br_2 + 3 H_2O$$

$$Br_2 + 2I^- = 2Br^- + I_2$$

$$2 S_2 O_3^{2-} + I_2 = S_4 O_6^{2-} + 2 I_1^{-}$$

3 mol $Br_2 \rightarrow 1 mol$ Phenol

1 mol BrO₃- (Primary standard, bromate)→ 3 mol Br₂

1 mol Br₂ \rightarrow 1 mol I₂

2 mol $S_2O_3^{2-}$ (thiosulfate) \rightarrow 1 mol I_2

Titration of the blank

- The volume of NaBrO₃ is V_{BrO3}, the volume of thiosulfate standard used is V₁*
- The mole amount of BrO₃⁻ is V_{BrO3} x [BrO₃⁻]
- Br₂ produced is 3x V_{BrO3} x [BrO₃-] mmol
- I₂ produced is 3x V_{BrO3} x [BrO₃-] mmol
- Thiosulfate needed to titrate produced I₂ is 2x3x
 V_{BrO3} x [BrO₃-] mmol
- The concentration of thiosulfate solution is
 6 x V_{BrO3} x [BrO₃-]/ V₁* mmol

Titration of the sample

- The volume of thiosulfate standard used is V₂*
- The mole amount of thiosulfate used is [6 x V_{BrO3} x [BrO₃-]/ V₁*] x V₂* mmol
- The amount of I_2 is the solution is 0.5 x [6 x V_{BrO3} x [BrO₃-]/ V_1^*] x V_2^* =[3 x V_{BrO3} x [BrO₃-]/ V_1^*] x V_2^* mmol
- The excess amount Br₂ remained is [3 x V_{BrO3} x [BrO₃-]/V₁*] x V₂* mmol
- Total amount of Br₂ produced is 3x V_{BrO3} x [BrO₃-] mmol
- The amount of Br_2 used to react with Phenol is $3x V_{BrO3} x [BrO_3^-]$ $[3 x V_{BrO3} x [BrO_3^-]/V_1^*] x V_2^* mol$
- The amount of Phenol titrated is $\{3x\ V_{BrO3}\ x\ [BrO_3^-]- [3\ x\ V_{BrO3}\ x\ [BrO_3^-]/\ V_1^*]\ x\ V_2^*\}/3=V_{BrO3}\ x\ [BrO_3^-]- [V_{BrO3}\ x\ [BrO_3^-]/\ V_1^*]\ x\ V_2^*\ mmol$

