Chapter 15 HW Problems

$15-2,15-5,15-11,15-14,15-15,15-18,15-19,15-24,15-26,15-27,15-29$

15-2
a) $\mathrm{Cu}^{+}+\mathrm{Ce}^{4+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Ce}^{3+}$
$\mathrm{E}_{(\mathrm{Cu}+/ \mathrm{Cu} 2+)}^{0}=0.161 \mathrm{~V}$
$\mathrm{E}_{(\mathrm{Ce} 3+/ \mathrm{Ce} 4+)}^{0}=1.70 \mathrm{~V}$
b)

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \leftrightarrow \mathrm{Cu}^{+}+\mathrm{AgCl}_{(\mathrm{s})} \\
& \mathrm{Ce}^{4+}+\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \leftrightarrow \mathrm{Ce}^{3+}+\mathrm{AgCl}_{(\mathrm{s})}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{Cu}+/ \mathrm{Cu} 2+)}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]\right) \\
& \text { Or } \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{Ce} 3+/ \mathrm{Ce} 4+)}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Ce}^{3+}\right] /\left[\mathrm{Ce}^{4+}\right]\right)
\end{aligned}
$$

d)

It will take 25.0 mL to reach the equivalence point $\left(\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}\right)$ at 1.00 mL of Cu^{+}added
$\mathrm{mmolCe} \mathrm{Ce}^{4+}=$
$(100 \mathrm{~mL})(0.0100 \mathrm{M})-(1.00 \mathrm{~mL})(0.0400 \mathrm{M})=0.960 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{Ce}{ }^{3+}=(1.00 \mathrm{~mL})(0.0400 \mathrm{M})=0.040 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}^{0}{ }_{(\mathrm{Ce} 3+/ \mathrm{Ce} 4+)}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Ce}^{3+}\right] /\left[\mathrm{Ce}^{4+}\right]\right) \\
& =1.70-0.197-0.05916 \log (.04 / .96) \\
& =1.58 \mathrm{~V}
\end{aligned}
$$

at 12.50 mL of Cu^{+}added ($1 / 2$ way!!!!)
$\mathrm{mmolCe} \mathrm{e}^{4+}=$
$(100 \mathrm{~mL})(0.0100 \mathrm{M})-(12.50 \mathrm{~mL})(0.0400 \mathrm{M})=0.500 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{Ce}{ }^{3+}=(1.00 \mathrm{~mL})(0.0400 \mathrm{M})=0.500 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Ce} 3+/ \mathrm{Ce4+)}}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Ce}^{3+}\right] /\left[\mathrm{Ce}^{4+}\right]\right) \\
& =1.70-0.197-0.05916 \log (0.500 / 0.500)
\end{aligned}
$$

$$
=1.503 \mathrm{~V}
$$

at 25.0 mL of Cu^{+}added (at equiv. pt)

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\left\{\left(\mathrm{E}_{(\mathrm{Cu}+/ \mathrm{Cu} 2+)}^{0}+\mathrm{E}_{(\mathrm{Ce3}+/ \mathrm{Ce4+})}^{0}\right) / 2\right\}-0.196 \mathrm{~V}= \\
& (0.161+1.70) / 2-0.196 \mathrm{~V} \\
& =0.734 \mathrm{~V}
\end{aligned}
$$

at 25.50 mL of Cu^{+}added $\mathrm{mmol} \mathrm{Cu}{ }^{+}=$

$$
(0.50 \mathrm{~mL})(0.0400 \mathrm{M})=0.020 \mathrm{mmol}
$$

$\mathrm{mmol} \mathrm{Cu}{ }^{2+}=(100 \mathrm{ml})(0.0100 \mathrm{M})=1.00 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Cu}+/ \mathrm{Cu} 2+)}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]\right) \\
& =0.161-0.197-0.05916 \log (0.02 / 1.00) \\
& =0.065 \mathrm{~V}
\end{aligned}
$$

$\mathrm{mmol} \mathrm{Cu}{ }^{+}=$

$$
(25.00 \mathrm{ml})(0.0400 \mathrm{M})=1.00 \mathrm{mmol}
$$

$\mathrm{mmol} \mathrm{Cu}{ }^{2+}=(100 \mathrm{ml})(0.0100 \mathrm{M})=1.00 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Cu}+/ \mathrm{Cu} 2+)}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgClref})}-0.05916 \log \left(\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]\right) \\
& =0.161-0.197-0.05916 \log (1.00 / 1.00) \\
& =-0.036 \mathrm{~V}
\end{aligned}
$$

15.3
a) $\mathrm{Sn}^{2+}+\mathrm{Tl}^{3+} \rightarrow \mathrm{Sn}^{4+}+\mathrm{Tl}^{+}$
$\mathrm{E}_{(\mathrm{T} 1+/ \mathrm{Tl} 3+)}^{0}=0.77 \mathrm{~V}$
$\mathrm{E}_{(\mathrm{Sn} 2+/ \mathrm{Sn} 4+)}^{0}=0.139 \mathrm{~V}$
b)

$$
\begin{aligned}
& \mathrm{Sn}^{4+}+2 \mathrm{Hg}(\mathrm{~s})+2 \mathrm{Cl}^{-} \leftrightarrow \mathrm{Sn}^{2+}+\mathrm{Hg}_{2} \mathrm{Cl}_{2(\mathrm{~s})} \\
& \mathrm{Tl}^{3+}+2 \mathrm{Hg}(\mathrm{~s})+2 \mathrm{Cl}^{-} \leftrightarrow \mathrm{Tl}^{+}+\mathrm{Hg}_{2} \mathrm{Cl}_{2(\mathrm{~s})}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{Tl}+/ \mathrm{Tl} 3+)}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 / 2 \log \left(\left[\mathrm{Tl}^{+}\right] /\left[\mathrm{Tl}^{3+}\right]\right) \\
& \mathrm{Or} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{Sn} 2+/ \mathrm{Sn} 4+)}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 \log \left(\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Sn}^{4+}\right]\right)
\end{aligned}
$$

d)

It will take 5.00 mL to reach the equivalence point $\left(\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}\right)$
at 1.00 mL of Tl^{3+} added
$\mathrm{mmol} \mathrm{Sn}{ }^{2+}=$
$(25.0 \mathrm{~mL})(0.0100 \mathrm{M})-(1.00 \mathrm{~mL})(0.0500 \mathrm{M})=0.200 \mathrm{mmol}$ $\mathrm{mmol} \mathrm{Sn}{ }^{4+}=(1.00 \mathrm{~mL})(0.0500 \mathrm{M})=0.0500 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Sn2+/Sn4+)}}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 / 2 \log \left(\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Sn}^{4+}\right]\right) \\
& =0.139-0.241-0.05916 / 2 \log (0.200 / .0500) \\
& =-0.120 \mathrm{~V}
\end{aligned}
$$

at 2.50 mL of Tl^{3+} added ($1 / 2$ way!!!!) $\mathrm{mmol} \mathrm{Sn}{ }^{2+}=$
$(25.0 \mathrm{~mL})(0.0100 \mathrm{M})-(2.50 \mathrm{~mL})(0.0500 \mathrm{M})=0.125 \mathrm{mmol}$ $\mathrm{mmol} \mathrm{Sn}{ }^{4+}=(2.50 \mathrm{~mL})(0.0500 \mathrm{M})=0.125 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Sn2+/Sn4+)}}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 / 2 \log \left(\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Sn}^{4+}\right]\right) \\
& =0.139-0.241-0.05916 / 2 \log (0.125 / 0.125) \\
& =-0.102 \mathrm{~V}
\end{aligned}
$$

at 5.00 mL of Tl^{3+} added (at equiv. pt)

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\left\{\left(\mathrm{E}_{(\mathrm{Sn} 2+/ \mathrm{Sn} 4+)}^{0}+\mathrm{E}_{(\mathrm{Tl}+/ \mathrm{T} 13++)}^{0}\right) / 2\right\}-0.241 \mathrm{~V}= \\
& (0.139+0.77) / 2-0.241 \mathrm{~V} \\
& =0.21 \mathrm{~V}
\end{aligned}
$$

at 5.10 mL of Tl^{3+} added $\mathrm{mmol} \mathrm{Tl}{ }^{3+}=$
$(0.10 \mathrm{~mL})(0.0500 \mathrm{M})=0.0050 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{Tl}+=(25.0 \mathrm{~mL})(0.0100 \mathrm{M})=0.250 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Tl}+/ \mathrm{Tl} 3+)}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 / 2 \log \left(\left[\mathrm{Tl}^{+}\right] /\left[\mathrm{Tl}^{3+}\right]\right) \\
& =0.77-0.241-0.05916 / 2 \log (0.250 / 0.005) \\
& =0.49 \mathrm{~V}
\end{aligned}
$$

At 10.00 mL of Tl^{3+} added $\mathrm{mmol} \mathrm{Tl}{ }^{3+}=$
$(5.00 \mathrm{~mL})(0.0500 \mathrm{M})=0.250 \mathrm{mmol}$ $\mathrm{mmol} \mathrm{Tl}+=(25.0 \mathrm{~mL})(0.0100 \mathrm{M})=0.250 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Tl}+/ \mathrm{Tl} 3+)}^{0}-\mathrm{E}_{(\mathrm{SCE})}-0.05916 / 2 \log \left(\left[\mathrm{Tl}^{+}\right] /\left[\mathrm{Tl}^{3+}\right]\right) \\
& =0.77-0.241-0.05916 / 2 \log (0.250 / 0.250) \\
& =0.53 \mathrm{~V}
\end{aligned}
$$

15-4
a)
balanced rxn for the titration

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{A}+2 \mathrm{Fe}^{3+} \leftrightarrow \mathrm{D}+2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}
$$

b)

$$
\mathrm{DA}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+2 \mathrm{Ag}(\mathrm{~s}) \leftrightarrow \mathrm{A}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{AgCl}(\mathrm{~s})
$$

Or

$$
\mathrm{Fe}^{3+}+\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \leftrightarrow \mathrm{Fe}^{2+}+\mathrm{AgCl}_{2(\mathrm{~s})}
$$

c)

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{A} / \mathrm{DA})}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgCl})}-0.05916 / 2 \log \left([\mathrm{~A}] /[\mathrm{D}]\left[\mathrm{H}^{+}\right]^{2}\right) \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{(\mathrm{Fe} 3+/ \mathrm{Fe} 2+)}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgCl})}-0.05916 \log \left(\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]\right)
\end{aligned}
$$

d) Equiv pt is 20.00 mL
at 5.0 mL of A added
$\mathrm{mmol} \mathrm{Fe}{ }^{3+}=$
$(10.0 \mathrm{~mL})(0.0200 \mathrm{M})-(10.0 \mathrm{~mL})(0.010 \mathrm{M})=0.10 \mathrm{mmol}$ $\mathrm{mmol} \mathrm{Fe}{ }^{3+}=(10.0 \mathrm{~mL})(0.010 \mathrm{M})=0.10 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{Fe} 2+/ \mathrm{Fe} 3+)}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AgCl})}-0.05916 \log \left(\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]\right) \\
& =0.767-0.197-0.05916 \log (1) \\
& =0.570 \mathrm{~V}
\end{aligned}
$$

At 10.0 mL of A added we are at the equivalence pt
At the equiv. pt.

$$
\left[\mathrm{Fe}^{2+}\right]=[\mathrm{D}], \text { and }\left[\mathrm{Fe}^{3+}\right]=[\mathrm{A}]
$$

To calculate $\mathrm{E}_{\text {cell }}$, we can make use of this info by adding the following two equations

$$
\begin{aligned}
& \mathrm{E}_{+}=\mathrm{E}_{(\mathrm{A} / \mathrm{DA})}^{0}-0.05916 / 2 \log \left([\mathrm{~A}] /[\mathrm{D}]\left[\mathrm{H}^{+}\right]^{2}\right) \\
& \mathrm{E}_{+}=\mathrm{E}_{(\mathrm{Fe} 3+/ \mathrm{Fe} 2+)}^{0}-0.05916 \log \left(\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]\right)
\end{aligned}
$$

To effectively combine the log terms of the two equations when we add them, it is convenient to multiply the first equation by a factor of 2

$$
\begin{gathered}
2 \mathrm{E}_{+}=2 \mathrm{E}_{(\mathrm{A} / \mathrm{DA})}^{0}-0.05916 \log \left([\mathrm{~A}] /[\mathrm{D}]\left[\mathrm{H}^{+}\right]^{2}\right) \\
+\quad \mathrm{E}_{+}=\mathrm{E}_{(\mathrm{Fe} 3+/ \mathrm{Fe} 2+)}^{0}-0.05916 \log \left(\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]\right) \\
\hline 3 \mathrm{E}_{+}=2 \mathrm{E}_{(\mathrm{A} / \mathrm{DA})}^{0}+\mathrm{E}_{(\mathrm{Fe} 3+/ \mathrm{Fe} 2+)}^{0}- \\
0.05916 \log \left([\mathrm{~A}]\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right][\mathrm{D}]\left[\mathrm{H}^{+}\right]^{2}\right) \\
3 \mathrm{E}_{+}=2(.390)+0.767-0.05916 \log \left(1 /\left[\mathrm{H}^{+}\right]^{2}\right) \\
\mathrm{pH}=0.30 \rightarrow\left[\mathrm{H}^{+}\right]=0.501 \mathrm{M} \\
3 \mathrm{E}_{+}=1.511 \mathrm{~V} \\
\mathrm{E}_{+}=0.504 \mathrm{~V} \\
\mathrm{E}_{\text {cell }}=\mathrm{E}^{+}-\mathrm{E}_{\mathrm{Ag} / \mathrm{AgCl}}^{0}=0.504-0.197=0.307 \mathrm{~V}
\end{gathered}
$$

At 15 mL added
$\mathrm{mmol} \mathrm{A}=$
$(5.0 \mathrm{~mL})(0.010 \mathrm{M})=0.050 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{D}=$
$\left(10.0 \mathrm{~mL} \mathrm{Fe}^{3+}\right)\left(0.0200 \mathrm{M} \mathrm{Fe}^{3+}\right)\left(1 \mathrm{~mol} \mathrm{D/} 2 \mathrm{~mol} \mathrm{Fe}{ }^{3+}\right)=0.100 \mathrm{mmol}$ (look at stoichiometry of the overall rxn)

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{(\mathrm{AADA})}^{0}-\mathrm{E}_{(\mathrm{Ag} / \mathrm{AsCl})}-0.05916 / 2 \log \left([\mathrm{~A}] /[\mathrm{D}]\left[\mathrm{H}^{+}\right]^{2}\right) \\
& =0.390-0.197-0.05916 / 2 \log \left\{(.05) /(0.100)(.501)^{2}\right\} \\
& =0.184 \mathrm{~V}
\end{aligned}
$$

15-11

The Walden reductor uses the standard $\mathrm{Ag} / \mathrm{AgCl}$ couple to reduce Fe^{3+}. The standard reduction potential for the $\mathrm{Ag} / \mathrm{AgCl}$ couple is large enough $(0.222 \mathrm{~V})$ that Cr^{3+} and TiO^{2+} are not reduced.
Where as the reduction potential for the $\mathrm{Zn} / \mathrm{Zn}^{2+}$ (Jones reducer) is much less -0.764 V , and Cr^{3+} and TiO^{2+} are reduced.

15-14
When 25.00 mL of unknown was passed through a Jones redactor, $\mathrm{MoO}_{4}{ }^{2-}$ was converted to Mo^{3+}. The filtrate required 16.43 mL of $0.01033 \mathrm{M} \mathrm{KMnO}_{4}$ to reach an endpoint.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{Mo}^{3+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{MoO}_{2}^{2+}
$$

A blank required 0.04 mL . Balance the reaction and find the molarity of moly species in the unknown.
This is not a balanced redox reaction as written. Write two balanced-half reactions and add.

$$
\begin{aligned}
& 3\left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}-\leftrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right) \\
& 5\left(\mathrm{Mo}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{MoO}_{2}^{2+}+4 \mathrm{H}^{+}+3 \mathrm{e}-\right)
\end{aligned}
$$

$$
3 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+5 \mathrm{Mo}^{3+} \leftrightarrow 3 \mathrm{Mn}^{2+}+5 \mathrm{MoO}_{2}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

Jones reductor
$\mathrm{MoO}_{4}{ }^{2-}+\mathrm{Zn}(\mathrm{s})+8 \mathrm{H}+\rightarrow \mathrm{Mo}^{3+}+\mathrm{Zn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
{\left[\mathrm{MoO}_{4}{ }^{2+}\right]=} & \left(16.39 \mathrm{~mL} \mathrm{MnO}_{4}^{-}\right)\left(0.01033 \mathrm{M} \mathrm{MnO}_{4}^{-}\right) *(5 \mathrm{mmol} \\
& \left.\mathrm{MoO}_{4}{ }^{2+} / 3 \mathrm{mmol} \mathrm{MnO}_{4}^{-}\right) /(25.00 \mathrm{~mL}) \\
= & 0.01129 \mathrm{M} \mathrm{MoO}_{4}{ }^{2+}
\end{aligned}
$$

15-15

A 25.00 mL aliquot of commercial a hydrogen peroxide solution was diluted to 250.0 mL in a volumetric flask. Then 25.00 mL of the diluted solution was mixed with 200 mL of water and 20 mL 3 M H2SO4 and titrated with 0.02123 M KMnO 4 . The first pink color was observed at 27.66 mL of titrant added. A blank prepared from water in place of the diluted hydrogen peroxide solution required 0.04 mL to give a visible pink color. Find the molarity of the commercial hydrogen peroxide solution.

$$
\begin{aligned}
& 2\left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}-\leftrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right) \quad \mathrm{E}^{0}=1.507 \\
& -5\left(\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}-\leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2}\right) \quad \mathrm{E}^{0}=0.695 \\
& 2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \leftrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2} \\
& \mathrm{mmol} \mathrm{MnO}_{4}{ }^{-}=(27.62 \mathrm{~mL})(0.02123 \mathrm{M})=0.5863 \mathrm{mmol} \mathrm{MnO} 4{ }^{-} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \text { dil }=(0.5863) *\left(5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{MnO} 44^{-}\right) /(25.00 \mathrm{~mL})} \\
& =0.05864 \mathrm{M} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=(0.05864)(250 \mathrm{~mL} / 25 \mathrm{~mL})=0.5864 \mathrm{M}}
\end{aligned}
$$

15-18
An aqueous glycerol solution weighing 100.0 mg was treated with 50.0 mL of $0.0837 \mathrm{M} \mathrm{Ce}^{4+}$ in 4 M HClO 4 at 60 C for 15 min to oxidize the glycerol to formic acid. The excess Ce^{4+} required 12.11 mL of $0.0448 \mathrm{M} \mathrm{Fe}^{2+}$ to reach a ferroin endpoint. What is the weight percent of glycerol in the unknown?

Write half rxn for the oxidation of glycerol to formic acid $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \leftrightarrow 3 \mathrm{HCO}_{2} \mathrm{H}+8 \mathrm{H}^{+}+8 \mathrm{e}-$
Write balanced rxn of glycerol with Ce^{4+}
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{Ce}^{4+} \leftrightarrow 8 \mathrm{Ce}^{3+}+3 \mathrm{HCO}_{2} \mathrm{H}+8 \mathrm{H}^{+}$
(8:1 molar ratio)
Write equation for the back titration
$\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \leftrightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+} \quad$ (1:1 molar ratio)
mmole Ce^{4+} needed to titrate glycerol $(\mathrm{G})=$ $(50.0 \mathrm{~mL})(0.0837 \mathrm{M})-(12.11 \mathrm{~mL})(0.0448 \mathrm{M})=3.6425 \mathrm{mmol}$ Ce^{4+}
$\mathrm{mmol} \mathrm{C} 3 \mathrm{H}_{8} \mathrm{O}_{3}=\left(3.6425 \mathrm{mmol} \mathrm{Ce}{ }^{4+}\right)\left(1 \mathrm{mmol} \mathrm{G} / 8 \mathrm{mmol} \mathrm{Ce}{ }^{4+}\right)$
$=0.45531 \mathrm{mmol} \mathrm{G}$
$\mathrm{mg} \mathrm{G}=(0.45531 \mathrm{mmolG})(92.0938 \mathrm{mg} \mathrm{G} / \mathrm{mmol} \mathrm{G})=41.931 \mathrm{mg}$
wt $\% \mathrm{G}=[(41.931 \mathrm{mg} \mathrm{G}) /(100.0 \mathrm{mg}$ sample $)] 100=41.9 \%$
15-19
mmole Ce^{4+} needed to titrate $\mathrm{NO}_{2}{ }^{-}=$ $(50.0 \mathrm{~mL})(0.1186 \mathrm{M})-(31.13 \mathrm{~mL})(0.04289 \mathrm{M})=$ $4.59483 \mathrm{mmol} \mathrm{Ce}{ }^{4+}$
$\left(\mathrm{mmol} \mathrm{NO}_{2}^{-}\right)_{\mathrm{dil}}=$
$\left(4.59483 \mathrm{mmol} \mathrm{Ce}{ }^{4+}\right)\left(1 \mathrm{mmol} \mathrm{NO}_{2}^{-} / 2 \mathrm{mmol} \mathrm{Ce}{ }^{4+}\right)=$ $2.29742 \mathrm{mmol} \mathrm{NO}_{2}^{-}$
$\left(\mathrm{mmol} \mathrm{NO}_{2}^{-}\right)_{\text {sample }}=$
$\left(2.29742 \mathrm{mmol} \mathrm{NO}_{2}^{-}\right)^{*}(500.0 / 25.00)=45.94 \mathrm{mmol} \mathrm{NO}_{2}{ }^{-}$
$\mathrm{mg} \mathrm{G}=\left(45.94 \mathrm{mmol} \mathrm{NO}_{2}^{-}\right)^{*}\left(68.995 \mathrm{mg} \mathrm{NaNO} 2 / \mathrm{mmol} \mathrm{NO}_{2}{ }^{-}\right)$
$=3170.2 \mathrm{mg} \mathrm{NaNO} 2=3.1702 \mathrm{~g} \mathrm{NaNO}_{2}$
$\% \mathrm{NaNO}_{2}=\left(3.1702 \mathrm{~g} \mathrm{NaNO}_{2}\right) /(4.030 \mathrm{~g}$ sample $) * 100=78.67 \%$
15.25

A potassium iodate solution was prepared by dissolving 1.022 g of KIO_{3} (FM 214.00) in a 500 mL flask. Then 50.00 mL of this solution was pipetted into a flask and treated with 2 g KI and 10 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. How many moles of $\mathrm{I}_{3}{ }^{-}$are formed?
a. $\quad \mathrm{mol} \mathrm{IO}_{3}{ }^{-}=(1.022 \mathrm{~g})(1 \mathrm{~mol} / 214.00 \mathrm{~g})=0.004776 \mathrm{~mol}$

Reaction
$\mathrm{IO}_{3}{ }^{-}+8 \mathrm{I}^{-} \rightarrow 3 \mathrm{I}_{3}{ }^{-}+3 \mathrm{H}_{2} \mathrm{O}$
$50 / 500 \mathrm{~mL}$ taken or 0.4776 mmol
Thus, $1.433 \mathrm{mmol} \mathrm{I}_{3}{ }^{-}$is formed.
b. Titration Reaction

$$
\begin{aligned}
& \mathrm{I}_{3}{ }^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} \\
& \text { So. } \ldots\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]=(2)(.001433) /(0.03766 \mathrm{~L})=0.07609 \mathrm{M}
\end{aligned}
$$

c.

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{DA}+2 \mathrm{H}^{+}+2 \mathrm{e}- & \mathrm{E}^{0}=0.390 \mathrm{~V} \\
\mathrm{I}_{3}^{-}+2 \mathrm{e}^{-} \rightarrow 3 \mathrm{I}^{-} & \mathrm{E}^{0}=0.535 \mathrm{~V}
\end{array}
$$

$$
\mathrm{A}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-} \rightarrow \mathrm{DA}+2 \mathrm{H}^{+}+3 \mathrm{I}^{-}
$$

$14.33 \mathrm{mmol} \mathrm{I}_{3}{ }^{-}$(or added to the ascorbic acid, 50 out of 500 mL)
$(14.22 \mathrm{~mL})(0.07609 \mathrm{M})=1.082 \mathrm{mmol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ added. It will react with $0.5410 \mathrm{mmol} \mathrm{I}_{3}{ }^{-}$.

Therefore, $1.433-0.5410=0.892 \mathrm{mmol}^{3}{ }^{-}$reacted with 0.892 mmol of ascorbic acid.
$(0.892 \mathrm{mmol})(176.13 \mathrm{mg} / \mathrm{mmol}) / 1000=0.157 \mathrm{~g} \mathrm{~A}$
$\mathrm{Wt} \%=(0.157 / 1.223) \cdot 100=12.8 \%$
d) must add indicator right before the endpoint.

15-26
A 3.026 g portion of a copper(II) salt was dissolved in a 250 mL volumetric flask. A 50.0 mL aliquot was analyzed by adding 1 g of KI and titrating the liberated I3- with 23.33 mL of 0.04668 M thiosulfate std. Find the weight \% of copper in the sample.
$2 \mathrm{Cu}^{2+}+5 \mathrm{I}^{-} \rightarrow \mathrm{CuI}_{(\mathrm{s})}+\mathrm{I}_{3}{ }^{-}$
$\mathrm{I}_{3}{ }^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$

Liberated $\mathrm{I}_{3}{ }^{-}=(23.33 \mathrm{~mL})(0.04668 \mathrm{M}) / 2=0.5445 \mathrm{mmol} \mathrm{I}_{3}{ }^{-}$
$\mathrm{mmol} \mathrm{Cu}^{2+}$ in 50.00 mL aliquot $=(0.5445)(2 / 1)=1.089 \mathrm{mmol}$ Cu^{2+}
mass Cu^{2+} in sample $=(1.089 \mathrm{mmol})(63.546 \mathrm{mg} / \mathrm{mmol}$
$\mathrm{Cu})(250 / 50)(1 \mathrm{~g} / 1000 \mathrm{mg})=0.3460 \mathrm{~g}$
weight $\%=(0.6920 / 3.026) \cdot 100=11.44 \%$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S} \leftrightarrow \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\
& \begin{array}{l}
\mathrm{I}_{3}^{-}+2 \mathrm{e}-\leftrightarrow 3 \mathrm{I}^{-} \\
\mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{3}{ }^{-} \leftrightarrow \mathrm{S}(\mathrm{~s})+2 \mathrm{H}^{+}+3 \mathrm{I}^{-} \\
\mathrm{I}_{3}^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \leftrightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} \\
\left(\mathrm{mmol} \mathrm{I}_{3}\right)_{\mathrm{tot}}=(25.00 \mathrm{~mL})(0.01044 \mathrm{M})=0.26100 \mathrm{mmol} \mathrm{I}_{3}{ }^{-} \\
\left(\mathrm{mmol} \mathrm{I}_{3}\right)_{\mathrm{S} 2 \mathrm{O} 3}=(14.44 \mathrm{~mL})(0.009336 \mathrm{M})^{*}\left(1 \mathrm{~mol} \mathrm{I}_{3}{ }^{-} / 2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \\
\quad=0.067406 \mathrm{mmol} \mathrm{I}
\end{array}{ }_{3}^{-} \\
& {\left[\mathrm{H}_{2} \mathrm{~S}\right]=(0.26100-0.067406)^{*}\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} / 1 \mathrm{~mol} \mathrm{I}_{3}{ }^{-}\right) / 25.00 \mathrm{ml}} \\
& \quad=0.007744 \mathrm{M} \text { or } 7.744 \mathrm{mM}
\end{aligned}
$$

Since we are titrating a solution that contain $\mathrm{I}_{3}{ }^{-}$before the equivalence point it is important that we wait until just before the equivalence point to add the starch indicator.

15-28
a)

Subtract the second and last equation

$$
\begin{array}{ll}
\mathrm{I}_{2(\text { aq })}+2 \mathrm{e}-\leftrightarrow 2 \mathrm{I}- & \Delta \mathrm{G}_{2}{ }^{0}=\mathrm{nFE}_{2}^{0}, \mathrm{E}_{2}^{0}=0.620 \mathrm{~V} \\
+\quad 3 \mathrm{I}^{-} \leftrightarrow 2 \mathrm{e}-+\mathrm{I}_{3}^{-} & \Delta \mathrm{G}_{3}^{0}=\mathrm{nFE}_{3}^{0}, \mathrm{E}_{3}^{0}=-0.535 \mathrm{~V} \\
\hline \mathrm{I}_{2(\text { aq })}+\mathrm{I}^{-} \leftrightarrow \mathrm{I}_{3}^{-} \quad \Delta \mathrm{G}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{2}^{0}+\mathrm{nFE}_{3}^{0}\right) \\
\text { you can say: } \\
\mathrm{nFE}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{2}^{0}+\mathrm{nFE}_{3}^{0}\right), \text { since both half rxns are two electron } \\
\operatorname{transfers} \Rightarrow \mathrm{Er}^{0}=\mathrm{E}_{2}^{0}+\mathrm{E}_{3}^{0}=0.085 \mathrm{~V} \\
\mathrm{~K}=10^{\mathrm{n}(\mathrm{E} 10+\mathrm{E} 30) / 0.05916_{0}^{0}}=10^{\left(2^{*} 0.085 / 0.05916\right)}=7 * 10^{2}
\end{array}
$$

b)

Subtract the first and last equation

$$
\begin{array}{ll}
& \mathrm{I}_{2(\mathrm{~s})}+2 \mathrm{e}-\leftrightarrow 2 \mathrm{I}- \\
+ & \Delta \mathrm{G}_{1}^{0}=\mathrm{nFE}_{1}{ }^{0}, \mathrm{E}_{1}^{0}=0.535 \mathrm{~V} \\
+ & \Delta \mathrm{I}^{-} \leftrightarrow 2 \mathrm{e}-+\mathrm{I}_{3}^{-}
\end{array}
$$

$$
\mathrm{I}_{2(\mathrm{~s})}+\mathrm{I}^{-} \leftrightarrow \mathrm{I}_{3}^{-} \quad \Delta \mathrm{G}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{1}^{0}+\mathrm{nFE}_{3}^{0}\right)
$$

$$
\Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\left(\mathrm{nFE}_{1}^{0}+\mathrm{nFE}_{3}^{0}\right)=0=-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{eq}}
$$

$$
\mathrm{K}_{\mathrm{eq}}=1.0
$$

$\mathrm{nFE}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{1}^{0}+\mathrm{nFE}_{3}{ }^{0}\right)$, since both half rxns are two electron transfers $\Rightarrow \mathrm{Er}^{0}=\mathrm{E}_{1}^{0}+\mathrm{E}_{3}{ }^{0}=0.000 \mathrm{~V}$

$$
\mathrm{K}=10^{\mathrm{nF}(\mathrm{E} 10+\mathrm{E} 30)}=1.0
$$

c)

Subtract the first two equations

$$
\begin{array}{ll}
& \begin{array}{ll}
\mathrm{I}_{2(\mathrm{~s})}+2 \mathrm{e}-\leftrightarrow 2 \mathrm{I}- & \Delta \mathrm{G}_{1}^{0}=\mathrm{nFE}_{1}^{0}, \mathrm{E}_{1}^{0}=0.535 \mathrm{~V} \\
2 \mathrm{I}-\leftrightarrow \mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{e}-
\end{array} \\
\hline & \Delta \mathrm{G}_{2}^{0}=\mathrm{nFE}_{2}^{0}, \mathrm{E}_{2}^{0}=-0.620 \mathrm{~V} \\
\hline & \Delta \mathrm{G}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{1}^{0}+\mathrm{nFE}_{3}^{0}\right)
\end{array}
$$

$\mathrm{nFE}_{\mathrm{r}}^{0}=\left(\mathrm{nFE}_{1}^{0}+\mathrm{nFE}_{3}^{0}\right)$, since both half rxns are two electron transfers $\Rightarrow \mathrm{Er}^{0}=\mathrm{E}_{1}{ }^{0}+\mathrm{E}_{3}{ }^{0}=-0.085 \mathrm{~V}$

$$
\mathrm{K}=10^{\mathrm{n}(\mathrm{E} 10+\mathrm{E} 30) / 0.05916}=10^{\left(2^{*}-0.085 / 0.05916\right)}=1.338^{*} 10^{-3}
$$

$$
\mathrm{K}=\left[\mathrm{I}_{2(\mathrm{aq})}\right]=0.001338 \mathrm{~mol} / \mathrm{L} \Rightarrow 0.3 \mathrm{~g} / \mathrm{L}
$$

15-31

WoW!!! This is a fun one!!!! You must break it down into steps.
There are four different reactions that are occurring in this experiment; the first two are given, the last two are not.

Let us write the last two out
Rxn 3
The excess Br_{2} is converted to Br^{-}, producing $\mathrm{I}_{3}{ }^{-}$
$\mathrm{Br}_{2}+3 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{3}^{-}$(this a balanced 2 e - transfer redox rxn)
Rxn 4
$\mathrm{I}_{3}{ }^{-}$is titrated with $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
$\mathrm{I}_{3}^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \leftrightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$

OK!
moles of $\mathrm{I}_{3}{ }^{-}$produced from rxn $3=$
$(8.83 \mathrm{ml})(0.05113 \mathrm{M})^{*}\left(1 \mathrm{~mol} \mathrm{I}_{3}{ }^{-} / 2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=0.22574 \mathrm{mmol} \mathrm{I}_{3}{ }^{-}$
moles of excess Br_{2} left over from rxn $2=$
$\left(0.22574 \mathrm{mmol} \mathrm{I}_{3}\right)^{*}\left(1 \mathrm{~mol} \mathrm{Br} 2 / 1 \mathrm{~mol} \mathrm{I}_{3}{ }^{-}\right)=0.22574 \mathrm{mmol} \mathrm{Br}_{2}$
mmol Br_{2} produced from rxn $1=$ $(25.00 \mathrm{ml})(0.02000 \mathrm{M})^{*}\left(3 \mathrm{~mol} \mathrm{Br}_{2} / 1 \mathrm{~mol} \mathrm{BrO}_{3}{ }^{-}\right)=1.500 \mathrm{mmol} \mathrm{Br}_{2}$
mol Br_{2} reacted with $\mathrm{Al}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ON}\right)_{3}=$ $1.500 \mathrm{mmol}-0.22574 \mathrm{mmol}=1.2743 \mathrm{mmol} \mathrm{Br}_{2}$
mmol Al ${ }^{3+}$ in unknown $=$
$(1.2743 \mathrm{mmol} \mathrm{Br} 2)\left(1 \mathrm{~mol} \mathrm{C} 9 \mathrm{H}_{7} \mathrm{ON} / 2 \mathrm{~mol} \mathrm{Br} 2\right) *\left(1 \mathrm{~mol} \mathrm{Al}{ }^{3+} / 3 \mathrm{~mol}\right.$ $\left.\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ON}\right)=0.21238 \mathrm{mmol} \mathrm{Al}{ }^{3+} \Rightarrow 5.730 \mathrm{mg} \mathrm{Al}$

In order to eliminate rounding errors it is important that you keep as many figures as we can in each of the intermediate calculations. Then, for the final answer you must go back through each step starting from the first one to determine the correct sig. figs that carry through to the answer.

