Organic Chemistry II / CHEM 252

Chapter 21 – Phenoles and Aryl Halides – Nucleophilic Aromatic Substitution

> Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

Nomenclature

Phenols have hydroxyl groups bonded directly to a benzene ring

 Naphthols and phenanthrols have a hydroxyl group bonded to a polycyclic benzenoid ring

Synthesis of Phenols

- Laboratory Synthesis
 - Phenols can be made by hydrolysis of arenediazonium salts

Synthesis of Phenols

- Industrial Syntheses
 - 1. Hydrolysis of Chlorobenzene (Dow Process)
 - Chlorobenzene is heated with sodium hydroxide under high pressure
 - The reaction probably proceeds through a benzyne intermediate

- 2. Alkali Fusion of Sodium Benzenesulfonate
 - Sodium benzenesulfonate is melted with sodium hydroxide

$$SO_3^-Na^+ + 2 \text{ NaOH} \xrightarrow{350^\circ\text{C}} O^-Na^+ + Na_2SO_3 + H_2O$$

Sodium
benzenesulfonate

Synthesis of Phenols

- 3. From Cumene Hydroperoxide
 - Benzene and propene are the starting materials for a three-step sequence that produces phenol and acetone

5

Reactions of Phenols as Acids

Acid Strength of Phenols

Name	pK _a (in H₂O at 25°C)
Phenol	9.89
2-Methylphenol	10.20
3-Methylphenol	10.01
4-Methylphenol	10.17
2-Chlorophenol	8.11
3-Chlorophenol	8.80
4-Chlorophenol	9.20
2-Nitrophenol	7.17
3-Nitrophenol	8.28
4-Nitrophenol	7.15
2,4-Dinitrophenol	3.96
2,4,6-Trinitrophenol	0.38
(picric acid)	
1-Naphthol	9.31
2-Naphthol	9.55

Reactions of Phenols as Acids

• Phenol is much more acidic than cyclohexanol

- Experimental results show that the oxygen of a phenol is more positive and this makes the attached hydrogen more acidic
 - The oxygen of phenol is more positive because it is attached to an electronegative sp² carbon of the benzene ring
 - Resonance contributors

Reactions of Phenols as Acids

• Phenols are soluble in aqueous sodium hydroxide because of their relatively high acidity - most alcohols are not

$$\bigcirc$$
 $OH + NaOH \xrightarrow{H_2O}$ \bigcirc $O^-Na^+ + H_2O$

Stronger acid
 $pK_a \cong 10$ Stronger
baseWeaker
baseWeaker acid
 $pK_a \cong 16$ (slightly soluble)(soluble)(soluble)

 $CH_3(CH_2)_4CH_2OH + NaOH \xrightarrow{\sim}_{H_2O} CH_3(CH_2)_4CH_2O^-Na^+ + H_2O$

Weaker acidWeakerStrongerStronger acid $pK_a \cong 18$ basebase $pK_a \cong 16$ (very slightly soluble)

- Phenols are not acidic enough to be soluble in aqueous sodium bicarbonate (NaHCO₃)
 - Carboxylic acids are soluble in aqueous sodium bicarbonate

• Phenols can be acylated with acid chlorides and anhydrides

$$\longrightarrow OH \xrightarrow{\mathbf{RCCI}} OH \xrightarrow{\mathbf{RCCI}} O \xrightarrow{\mathbf{RCCI}$$

- Phenols in the Williamson Ether Synthesis
 - Phenoxides (phenol anions) react with primary alkyl halides to form ethers by an $S_N 2$ mechanism General Reaction

ArOH
$$\xrightarrow{\text{NaOH}}$$
 ArO⁻ Na⁺ $\xrightarrow{\mathbf{R}-\mathbf{X}}$ $\overrightarrow{\mathbf{X} = Cl, Br, I,}$ ArOR + NaX
OSO₂OR' or
OSO₂R')

Specific Examples

9

<u>Cleavage of Alkyl Aryl Ethers</u>

- Reaction of alkyl aryl ethers leads to an alkyl halide and a phenol
 - Recall that when a dialkyl ether is reacted, two alkyl halides are produced

General Reaction

$$Ar - O - R \xrightarrow{concd HX} Ar - OH + R - X$$

Specific Example

• <u>Reaction of the Benzene Ring of Phenols</u>

<u>Bromination</u> - usually the tribromide is obtained; monobromination - in the presence of carbon disulfide at low temperature

<u>Nitration</u> - produces *o*- and *p*-nitrophenol (Low yields)

– <u>Sulfonation</u>

• Sulfonation gives mainly the ortho (kinetic) product at low temperature and the para (thermodynamic) product at high temperature

Major product under kinetic control

Major product under thermodynamic control

- The Kolbe Reaction
 - Carbon dioxide is the electrophile for an electrophilic aromatic substitution with phenoxide anion
 - The phenoxide anion reacts as an enolate
 - The initial keto intermediate undergoes tautomerization to the phenol
 - Kolbe reaction of sodium phenoxide results in salicyclic acid, a synthetic precursor to acetylsalicylic acid (aspirin)

- The Claisen Rearrangement
 - Allyl phenyl ethers undergo a rearrangement to an allyl phenol
 - intramolecular; the allyl group migrates to the aromatic ring
 - The unstable keto intermediate undergoes keto-enol tautomerization to give the phenol group
 - The reaction is concerted.

Quinones

- Hydroquinone is oxidized to *p*-benzoquinone by mild oxidizing agents
 - Formally this results in removal of a pair of electrons and two protons from hydroquinone - This reaction is reversible

- *p*-Benzoquinone
- Every living cell has ubiquinones (Coenzymes Q) in the inner mitochondrial membrane
 - These compounds serve to transport electrons between substrates in enzyme-catalyzed oxidation-reduction reactions

- Nucleophilic Aromatic Substitution
 - Simple aryl and vinyl halides do not undergo nucleophilic substitution

C

$$\mathbf{Nu} : \xrightarrow{} X \longrightarrow \text{no reaction}$$

 $CH_2 = CHCl + NaOH \xrightarrow{H_2O} no substitution$

• S_N^2 reaction also doesn't occur because the carbon-halide bond is shorter and stronger than in alkyl halides

$$RCH = CH - \chi : \longleftrightarrow R - CH - CH = \ddot{X}:$$

- Nucleophilic Aromatic Substitution by Addition-Elimination: The S_NAr Mechanism
 - Nucleophilic substitution can occur on benzene rings when strong electron-withdrawing groups are ortho or para to the halogen atom

NO₂

NO₂

- The reaction occurs through an addition-elimination mechanism
 - A Meisenheimer complex, which is a delocalized carbanion, is an intermediate it is called nucleophilic aromatic substitution (S_NAr)

• The carbanion is stabilized by electron-withdrawing groups in the ortho and para positions

 Nucleophilic Aromatic Substitution through an Elimination-Addition Mechanism: Benzyne – severe conditions

Alkyl Halides

- A calculated electrostatic potential map of benzyne shows added electron density at the site of the benzyne π bond
 - The extra π bond of benzyne is in the same plane as the ring

• A labeling study is a strong evidence for an elimination-addition mechanism and against a straightforward S_N^2 mechanism

• Phenylation

Acetoacetic esters and malonic esters can be phenylated by benzyne generated *in situ* from bromobenzene

$$CH_{3}CCH_{2}COC_{2}H_{5} + C_{6}H_{5}Br + 2 NaNH_{2} \xrightarrow{\text{liq. NH}_{3}} CH_{3}CCHCOC_{2}H_{5}$$