Keypoints Stoichiometry

Definitions

You will not be asked to write a definition of any of these but I do expect you to recognized them when they are used in problems, etc..

concentration by percent

counting units

g/L

g/ml

isotope

molar mass

molarity (M)

millimolar (mM)

moles

parts per billion (ppb)

parts per million(ppm)

Solution

solvent

solute

Concepts

- 1. Be able to explain where the number 6.022 x 1023 comes from?
- 2. Be able to explain why the molar mass of carbon is 12.011 g/mole, not 12.0000 grams/mole.

Calculations

- 1. Be able to calculate <u>the molar mass of a compound</u> when given the *formula of* the compound and a periodic table that gives the atomic, or molar, masses of the elements.
- 2. Be able to calculate <u>the number of moles</u> in a sample when given the <u>number of grams</u> in the sample, and be able to calculate the <u>number of grams</u> of a sample when given the <u>number of moles</u> in the sample.
- 3. Be able to calculate the *molarity* of a solution when given the *number of moles* of the solute and the volume of the solution.
- 4. Be able to calculate the *molarity of a solution* when given the *mass of the solute in grams* and the *volume of the solution*.

- 5. Be able to calculate *the number of moles of a solute* in a solutions when given *the volume* of the solution and its *molarity*.
- 6. Be able to calculate *concentration of a solution* made by *diluting a solution of known molarity*.
- 7. Be able to calculate the *concentration of a solute by percent*, when given the *mass of the solvent* and the *mass of the solute*.
- 8. When given the *number of grams of a solute in a solution*, and the *number of grams of the solution* be able to calculate the *concentration of the solute in percents, ppb and ppm*.
- 9. When given the *number of moles of a solute* in a solution, and the *mass of the solution* be able to calculate the *concentration of the solute in percents, ppb and ppm*.
- 10. Be able to calculate *the mass of a solute* in a solution when given the concentration of the solute in either *concentration by percent, ppb or ppm*.
- 11. When given a *chemical equation*, and *the number of moles of one of the reactants or products* be able to calculate *the number of moles of another one of the reactants or products*.
- 12. When given a *chemical equation*, and the *mass of one of the reactants or products* be able to calculate *the mass of another one of the reactants or products*.
- 13. Be able to calculate the <u>concentration</u> of a solute in a solution when given the mass of the solution and the mass of the solute.
- 14. Be able to calculate the <u>concentration</u> of a solute in a solution when given the mass of the solution and the number of moles of the solute in the solution.