Derivation of Bohr’s Equations for the One-electron Atom

Bohr set about to devise a model that would explain the observed line spectra of one-
electron atoms, such as H, He", Li**. The model Bohr used was based on Rutherford’s
conclusion from his gold foil experiments that the negative electrons in an atom are a great
distance away from the positive charge in the nucleus. Bohr began with a classical mechanical
approach, which assumes that the electron in a one-electron atom is moving in a circular orbit
with a radius, r, from the nucleus.
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The movement of an electron in its orbit would create a centrifugal force, which gives it a
tendency to fly away from the nucleus. This force is given by
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where m is the mass of the electron, and v is its velocity. In order to have a stable atom, it was
assumed that this centrifugal force was exactly matched by an opposing centripetal force,
drawing the electron inward through the coulombic attraction between the electron’s negative
charge and the positive charge in the nucleus. This coulombic force of attraction is given by
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Equating these two forces, we have
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We can rearrange equation (1), solving for r, to obtain the following expression:
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If we multiply the right side of equation (2) by m/m, this becomes
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Written in this way, the numerator is the electron’s angular momentum squared, (mvr)*. At this
point, Bohr made an assumption that departs radically from concepts of classical mechanics.
Bohr’s assumption, called the quantum hypothesis, asserts that the angular momentum, mvr, can
only take on certain values, which are whole-number multiples of 4#/2m; i.e.,

mvr = nh/2n n=1,2,3,..

where /4 is Planck’s constant. Substituting n//2n for mvr in equation (3) we obtain the Bohr
expression for the radius:
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For the hydrogen atom (Z = 1), the smallest radius, given the symbol a, is obtained from
equation (4) when n = 1:
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This is called the Bohr radius. Using the definition of @, in equation (5), we can rewrite equation
(4) to obtain a more compact form of the radius equation for any one-electron atom:
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Since a, is a constant, equation (6) predicts that the radius increases in direct proportion to the
square of the quantum number, #?, and decreases in inverse proportion to the atomic number, Z.
Thus, the sizes of the orbits in hydrogen are predicted to be a,, 4a,, 9a,, 16a,, 25a,, etc.
Furthermore, the orbits in He" (Z = 2) for any value of n are predicted to be half as large as the
comparable orbits in H.

Although the radius equation is an interesting result, the more important equation
concerned the energy of the electron, because this correctly predicted the line spectra of one-
electron atoms. The derivation of the energy equation starts with the assumption that the
electron in its orbit has both kinetic and potential energy, £ = K + U. The kinetic energy, which
arises from electron motion, is K = Yamv*. The potential energy, which arises from the
coulombic attraction between the negative charge of the electron and the positive charge in the
nucleus, is given by U = —Ze*/r. Thus,
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We have seen that in Bohr’s model the coulombic force is assumed to be equal and opposite to
the centrifugal force [equation (1)]. We can rearrange equation (1) to obtain an expression for

mv*:
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Substituting this into the first term in equation (7) we obtain
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The negative sign in equation (9) indicates a favorable energy of attraction, which must be
overcome to remove the electron to an infinite distance from the nucleus. We can eliminate »
from equation (9) by substituting equation (4):
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If we gather all the constants to define a single constant, B, equation (10) can be written most
simply as
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As equation (11) shows, the energy becomes more favorable (negative) in direct proportion to
the square of the nuclear charge, and less favorable (less negative) in inverse proportion to the
square of the quantum number.

For the one-electron atom (H, He", Li*", etc.), the lowest energy occurs when n = 1. This
energy state is called the ground state. If the atom receives sufficient energy, as in a gas
discharge tube, its electron may jump to a higher orbit (n > 1) with corresponding higher energy.
This represents an excited state. The only way the atom can assume a lower-energy state is
through emission of energy in the form of electromagnetic radiation. The energy of this
radiation is equal to the energy difference between the high state and the lower state:
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In terms of the Bohr energy equation [equation (11)], the energy of the emitted light should be
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We assume that n,;,, is always at least one integer value greater than ny,; i.€. 1y, > n,,. The
lower state, n,,,, may be either the ground state (» = 1) or any other excited state with a lower
value of n than the original state, n,,,. Since the energy of electromagnetic radiation is
conventionally not given a sense of sign, equation (12) has been formulated here in terms of
absolute value.

From Planck we know that E = hv, so if we divide through equation (12) by # we can
write an expression for the frequencies of the emitted light:
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For hydrogen (Z = 1), the constants outside the brace equal the Rydberg constant in units of hertz
(Hz=s");i.e.,, BZ*/h=R. This general equation predicts the frequencies of the Balmer series,
if the low state is n,,, = 2:
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Equation (14) is equivalent to the equation Balmer deduced empirically. It represents the
frequencies for the series of transitions from various excited states to the same lower state for
which n,,, = 2.

Substituting other values of n, in equation (13) gives frequencies that predict other
series of line spectra for hydrogen, which had not been observed at the time Balmer did his
experiments. Balmer’s elucidation of the series for which #,,, = 2 was simply a result that
visible light was the most readily observed kind of electromagnetic radiation with the
spectroscopes available in the late nineteenth century. Other series predicted by equation (13)
fall either in the ultraviolet or infrared regions, which are more difficult to observe
experimentally. With better instrumentation and the impetus of the Bohr equation, the following
line-spectra were subsequently discovered, in addition to the Balmer series:



n., | Region Series
Name

1 ultraviolet | Lyman

2 visible Balmer

3 infrared Paschen

4 infrared Brackett

5 infrared Pfund

The ability to predict the frequencies of these series gave credibility to the Bohr model.
However, all attempts to extend this approach to multi-electron atoms failed. More significantly,
its “particle-only” view of the atom and its exact predictions for the location and momentum of
the electron were contrary to the subsequent understandings of wave-particle duality and the
Heisenberg uncertainty principle. By the 1930's, most physicists (including Bohr) had
abandoned this model in favor of the wave mechanical approach formulated by Irwin
Schrodinger.



