Answers to Chapter 16 Additional Problems

- 1. Write net ionic equations for all equilibria that lie more than 50% to the right when the following pairs of solutions are mixed. Assume adequate amounts of each reagent for all possible equilibria.
- a. $H_3PO_4(aq) + HCO_2^-(aq) + H_2PO_4^-(aq) + HCO_2H(aq)$
- b. $H_2C_4H_4O_6(aq) + HCO_3^-(aq)$ 6 $HC_4H_4O_6^-(aq) + H_2CO_3(aq)$ { $H_2CO_3(aq) = CO_2(g) + H_2O(l)$ } $HC_4H_4O_6^-(aq) + HCO_3^-(aq)$ 6 $C_4H_4O_6^{2-}(aq) + H_2CO_3(aq)$
- c. $H_2S(aq) + SO_3^{2-}(aq) 6 HS^{-}(aq) + HSO_3^{-}(aq)$
- d. $PO_4^{3-}(aq) + CH_3CO_2H(aq) 6 HPO_4^{2-}(aq) + CH_3O_2^{-}(aq) HPO_4^{2-}(aq) + CH_3CO_2H(aq) 6H_2PO_4^{-}(aq) + CH_3O_2^{-}(aq) H_2PO_4^{-}(aq) + CH_3CO_2H(aq) 6 no rxn$
- e. $HC_8H_4O_4^-(aq) + OCl^-(aq) 6 C_8H_4O_4^{2-}(aq) + HOCl(aq)$
- 2. What is the pH of a 0.10 M Al(NO₃)₃ solution?

$$Al(NO_3)_3(aq) 6 Al^{3+}(aq) + 3NO_3(aq)$$

 $Al^{3+}(aq)$ is $Al(H_2O)_6^{3+}$, which is a weak acid, HA, with $K_a = 7.9 \times 10^{-6}$:

$$Al(H_2O)_6^{3+} + H_2O^{\circ} Al(H_2O)_5(OH)^{2+} + H_3O^{+} K_a = 7.9 \times 10^{-6}$$

 $C_{\rm HA} = 0.10 \text{ M} >> K_a = 7.9 \text{ x } 10^{-6}$, so use both Assumptions I and II:

$$[H_3O\%]$$
' $\sqrt{(0.10)(7.9 \times 10^{\&6})}$ ' $8.9 \times 10^{\&4}M$

$$pH = 3.05$$

3. Calculate the concentrations of all species in 0.100 M *o*-phthalic acid, H₂C₈H₄O₄. For simplicity, abbreviate the acid H₂Ph.

$$H_2Ph + H_2O \circ HPh^- + H_3O^+$$
 $K_1 = 1.30 \times 10^{-3}$
 $HPh^- + H_2O \circ Ph^{2-} + H_3O^+$ $K_2 = 3.1 \times 10^{-6}$

Assume all hydronium ion comes from hydrolysis step 1, and by Assumption I that $[H_3O^+] = [HPh^-]$. Note that $K_1 = 1.30 \times 10^{-3}$. $C_{H^2Ph} = 0.100 \text{ M}$, so we cannot ignore dissociation of the acid (i.e., no Assumption II).

$$K_1$$
 ' $\frac{[\text{H}_3\text{O}\%][\text{HPh}^\&]}{[\text{H}_2\text{Ph}]}$ ' $\frac{[\text{H}_3\text{O}\%]^2}{0.100 \& [\text{H}_3\text{O}\%]}$ ' $1.30 \times 10^{\&3}$

This yields the following quadratic equation:

$$[H_3O^+]^2 + 1.30 \times 10^{-3} [H_3O^+] - 1.30 \times 10^{-4} = 0$$

Taking the positive root gives

$$[H_3O^+] = 0.0107_7 M = 0.0108 M = [HPh^-]$$

From the exact mass balance expression

$$[H_2Ph] = 0.100 M - 0.0108 M = 0.089_2 M = 0.089 M$$

Substituting into K_2 with to find [Ph²⁻], using the assumption [H₃O⁺] = [HPh⁻], gives

$$K_2$$
 ' $\frac{[\text{H}_3\text{O}\%][\text{Ph}^{2\&}]}{[\text{HPh}^\&]}$ ' $3.1 \times 10^{\&6}$ ' $[\text{Ph}^{2\&}]$

(As always in these cases, the second conjugate base concentration equals the value of K_2 .)

Finally, solve K_w for [OH⁻].

[OH &]
$$\frac{K_w}{[\text{H}_3\text{O}^{\%}]}$$
 $\frac{1.0 \times 10^{\&14}}{0.0108}$ $9.3 \times 10^{\&13}$ M