Page I of /
Name (Please print family name last; e.g., Robert Boyle)
UMB Student Number
Chem 104 - Section 1 Hour Examination III May 5, 2006
This test consists of seven (7) pages, including this cover page, a table of conjugate acid-base pairs with K_a values, and a periodic table. Be sure your copy is complete before beginning your work. If this test packet is defective, ask for another one. Feel free to detach the acid-base table and/or periodic table to use for reference or scratch paper.
Give all numerical answers to the proper number of significant figures.
$K_{\rm w} = 1.00 \times 10^{-14}$

DO NOT WRITE BELOW THIS LINE

1.

2.

3 a - e

3 f & g + bonus

TOTAL

1. (12 points; 3 points each part) Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic.

$[H_3O^+]$	[OH ⁻]	рН	рОН	acidic/basic?
1.8 X10-10	5.6 x 10 ⁻⁵ M	9,75	4,25	basic

2. (44 points; 4 points each part) Fill in the blanks.

α

a. For the following reaction, label the conjugate acid-base pairs (i.e., acid₁/base₁; acid₂/base₂).

$$H_2AsO_4^- + C_8H_4O_4^{2-} \Rightarrow HAsO_4^{2-} + HC_8H_4O_4^-$$

 $acid_1$ bases bases acids

b. Write a balanced chemical equation for each of the following equilibria:

acid hydrolysis of
$$HC_8H_4O_4^ HC_8H_4O_4^ HC_8H_4O_4^ +H_2O = C_8H_4O_4^ +H_3O^+$$

base hydrolysis of $HC_8H_4O_4^ HC_8H_4O_4^ +H_2O = H_2C_8H_4O_4$ $+OH^-$

c. For the acid hydrolysis of o-phthalic acid, $H_2C_8H_4O_4$, $K_a = 1.3 \times 10^{-3}$. What is the value of K_b for the base hydrolysis of the hydrogen phthalate ion, $HC_8H_4O_4^{-2}$?

$$K_b = \frac{7.7 \times 10^{-12}}{\text{for HC}_8 \text{H}_4 \text{O}_4}$$

d. For the acid hydrolysis of the hydrogen phthalate ion, $HC_8H_4O_4^-$, $K_a = 3.1 \times 10^{-6}$. Judging from this and the K_b value you just calculated in question c, would a 0.10 M solution of NaHC₈H₄O₄(aq) be acidic or basic?

e. Consider a 0.10 M solution of the diprotic acid $H_2C_8H_4O_4(aq)$, for which $K_1 = 1.3 \times 10^{-3}$ and $K_2 = 3.1 \times 10^{-6}$. What is the concentration of $C_8H_4O_4^{2-}$ ion in this solution?

$$[C_8H_4O_4^{2-}] = 3.1 \times 10^{-6} M$$

Name	Key	

f. Refer to the Table of Conjugate Acid-Base Pairs. Which one of the following solutions when added in excess to a solution containing 1.0 mmol Na₃PO₄(aq) would produce 1.0 mmol H₂PO₄⁻ ion in solution: HOBr(aq), Cr(NO₃)₃(aq), NH₄Cl(aq)?

g. Assuming equal concentrations, which one of the following pairs would produce the more acidic solution?

$$HIO_2(aq)$$
 or $HIO_3(aq)$ HIO_3
 $C_6H_5CO_2H(aq)$ or $BrC_6H_4CO_2H(aq)$ $BrC_6H_4CO_2H$

h. Identify the Lewis acid and Lewis base in the following reaction

$$Cr^{3+}$$
 + $3 H_2NC_2H_4NH_2 \rightarrow [Cr(H_2NC_2H_4NH_2)_3]^{3+}$
acid base

i. Consider a 0.10 M solution of the weak acid HA, for which $pK_a = 1.23$. Would the expression $[H_3O^+] = \sqrt{C_{HA}K_a}$ give a reasonably accurate estimate of the hydronium ion concentration (less than 5% error)?

j The base B has $K_b = 1.0 \times 10^{-9}$. What is the pH of a buffer solution prepared by mixing 1.0 mol B with 1.0 mol of the salt HBCl in enough water to make a liter of solution?

$$pH = 5.00$$

k. Indicate whether 0.10 M aqueous solutions of each of the following solutions would have a pH > 7.0, pH < 7.0, or pH \approx 7.0:

$$Sr(NO_2)_2 > 7.0$$
 $Cr(NO_3)_3 < 7.0$

Name Key

3. (44 points) $K_a = 1.8 \times 10^{-4}$ for formic acid, HCO₂H. Consider the titration of 25.0 mL of 0.200 M HCO₂H solution (the analyte), with 0.100 M NaOH(aq) solution (the titrant):

α

$$\text{HCO}_2\text{H}(aq) + \text{OH}^-(aq) \rightarrow \text{HCO}_2^-(aq) + \text{H}_2\text{O}(l)$$

a. (4 points) How many milliliters of 0.100 M NaOH(aq) solution must be added to reach the equivalence point?

Vb = VaM2 = (25.0mL)(0.200M) = 50.0mL

- b. (2 points) What is the total volume in the solution at the equivalence point? 75.0 mL
- c. (2 points) How many millimoles of HCO₂H are present in the analyte sample before any titrant has been added?

millimoles
$$HCO_2H = 5.00$$

d. (6 points) What is the initial pH of the HCO₂H solution, before adding any titrant?

$$[H_{30}^{+}] = \sqrt{(0.200)(1.8 \times 10^{-4})} = \sqrt{3.6 \times 10^{-5}} = 6.0 \times 10^{-3}$$

 $\rho H = 2.22_{18} = 2.22$

e. (6 points) What is the pH of the resulting solution after adding 25.0 mL of 0.100 M NaOH(aq) solution? [Hint: How far along in the titration is this?]

(Continued on next page.)

Name Key

f. (10 points) What is the pH of the resulting solution after adding 40.0 mL of 0.100 M NaOH(aq) solution?

mmol OH- rdd-d = (40.0 m L)(0,100M) = 4.00 mmol HCO2H + OH -- HCO2 + H20

K2= [H30+][HC0-] = 1.8 ×10+ [H30+](4,00)

[H30+] = (1.00)(1.8×10-4) = 4.5×10-5 => pH = 4.35

g. (14 points) What is the pH at the equivalence point?

All HCO2H converted to 5,00 mmol HCO2 in 75,0 ml.

CHC0= = 5,00 mmol = 6.6667 X10-2 M

 $K_b^{HCO_2^-} = \frac{K\omega}{K^{HCO_2H}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4}} = 5.5 \times 10^{-11} = 5.6 \times 10^{-11}$

[OH]=1(6.66,2×10-2)(5,556×10")=13.704×10-12=1.9,×10 POH = 5.72 => pH = 8.28

BONUS (5 points) What is the pH of the solution after the addition of 60.0 mL of 0.100 M

NaOH solution? mmoloH- added 2 (60,0 mL)(0.160 M) = 6,00 mmpl

Add 5.00 6.00

4 dd NO 1.00

V=85,0m6

[OH-] = 1.00 mmsl = 1.17, X10-2 => POH = 1,929 => PH = 12.071