CHEM 103 Redox Reactions

Lecture Notes March 7, 2006 Prof. Sevian

Agenda

- Go over group problem
- Acids & bases
 - What you need to know about pH
 - Recap weak vs. strong acids/bases, and neutralization reactions
 - Recap how metal carbonates react with acids
- Oxidation-reduction (redox) reactions
 - How to recognize these reactions
 - Determining oxidation numbers of elements within a compound
 - Comparative reactivity (activity)
- Solution concentration
- Titration as a way to do stoichiometry

Breakdown of chemistry skills needed to do group problem

- Translate from name to chemical formula
- · Identify insoluble compounds using solubility rules
- Understand the difference between ions that are dissolved in water (aq) vs. ions that are in crystalline state (s)
- Recognize states of matter (mixture vs. pure, phases of pure matter)
- Complete a reaction, using the fact that ion charges don't change in an exchange reaction
- Recognize that H-OH is the same as H₂O
- Balance a reaction
- · Simplify by crossing out spectator ions

Strong vs. Weak Acids

- Strong acids (pH 1 to 4) are strong electrolytes
 - Only a few common acids are strong

HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄ (*memorize these*)

 A few other less common acids are strong (you do not need to memorize these)

e.g., HClO₃, HBrO₃ and some others

- Weak acids (pH 5-7) are weak electrolytes
 - It is safe to assume that all other acids are weak

Most common weak acids:

HF, HNO₂, HClO₂, HSO₃, CH₃COOH

Symbolic Representation How Can You Recognize a Base?

- Chemical formula contains hydroxide ion (OH-)
 - Sodium hydroxide: NaOH
 - Calcium hydroxide: Ca(OH)₂
 - Aluminum hydroxide: Al(OH)₃
 - Beware chemical formulas that <u>look</u> like they contain hydroxide ion. Organic alcohol group (-OH) is same atoms, but doesn't ionize to form OH⁻ ions.

methanol CH₃OH, ethanol CH₃CH₂OH, phenol C₆H₅OH

- · Substance reacts with water to form hydroxide ions
 - Ammonia: $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
 - Other amines (chemicals with –NH₂ functional group)

Strong vs. Weak Bases

- Strong bases (pH 11 to 14) are strong electrolytes
 - All bases containing the hydroxide ion (OH⁻) are strong Most common strong bases:

NaOH, KOH, LiOH, Ca(OH)₂, Mg(OH)₂

- Weak bases (pH 7-10) are weak electrolytes
 - Bases that do not contain the hydroxide ion (OH⁻) are weak Most common weak bases:

NH₃, CH₃NH₂, C₆H₅NH₂

- Organic alcohols are not bases
 - Organic molecules that contain an alcohol functional group (-OH) do <u>not</u> ionize to form hydroxide ions

What happens to pH when you mix acid and base solutions? Neutralization rxn

 $\begin{array}{rcl} Acid &+ & Base &\rightarrow & Salt &+ & Water \\ (H^+)(anion^-) &+ (cation^+)(OH^-) &\rightarrow (cation^+)(anion^-) &+ (H^+)(OH^-) \end{array}$ This reaction occurs if the Base contains OH⁻ (in other words, only strong bases)

Strong acid + Strong base (strong acid ionizes nearly completely): $HCl + NaOH \rightarrow NaCl + H_2O$ $H_2SO_4 + KOH \rightarrow KHSO_4 + H_2O$

Weak acid + Strong base (weak acid is mostly present as whole molecule): $HF + NaOH \rightarrow NaF + H_2O$ $CH_3COOH + KOH \rightarrow KCH_3COO + H_2O$

What you need to know about pH

- You do not need to learn how to calculate pH right now (if you want to learn, see the lecture notes from last lecture)
- You do need to know the general regions of the pH scale (strong acid, weak acid, neutral, weak base, strong base)

When a metal carbonate reacts with an acid: two-step process

- 1. $MgCO_3(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2CO_3(aq)$ (exchange rxn)
- 2. $H_2CO_3(aq) \rightarrow H_2O(l) + CO_2(g)$ (carbonic acid is unstable)

Sum reaction:

 $MgCO_{3}(s) + 2 HCl(aq) \rightarrow MgCl_{2}(aq) + H_{2}O(l) + CO_{2}(g)$

Net ionic equation: MgCO₃ (s) + 2 H⁺ (aq) \rightarrow Mg²⁺ (aq) + H₂O (l) + CO₂ (g)

Net Ionic Equations of Weak vs. Strong Acid + Strong Base Reactions Differ

Strong acid examples (acid ionizes nearly completely): $HCl + NaOH \rightarrow NaCl + H_2O$ $H^+(aq) + (aq) + (aq) + OH^-(aq) \rightarrow (aq) + (aq) + H_2O(l)$ Net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

$$\begin{split} H_2SO_4 + KOH &\rightarrow KHSO_4 + H_2O \\ H^+(aq) + H \underbrace{\swarrow_4^-(aq)}_{4^-}(aq) + \underbrace{\swarrow_4^-(aq)}_{4^-}(aq) + OH^-(aq) \rightarrow \underbrace{\swarrow_4^+(aq)}_{4^-}(aq) + H_2O(l) \\ \text{Net ionic equation: } H^+(aq) + OH^-(aq) \rightarrow H_2O(l) \end{split}$$

Net Ionic Equations of Weak vs. Strong Acid + Strong Base Reactions Differ

Weak acid examples (acid is mostly present as whole molecule): $HF + NaOH \rightarrow NaF + H_2O$

$$\begin{split} HF(aq) + \bigvee^{+}(aq) + OH^{-}(aq) \rightarrow \bigvee^{+}(aq) + F^{-}(aq) + H_2O(l) \\ \text{Net ionic equation: } HF(aq) + OH^{-}(aq) \rightarrow F^{-}(aq) + H_2O(l) \end{split}$$

 $CH_3COOH + KOH \rightarrow KCH_3COO + H_2O$

 $CH_{3}COOH (aq) + \checkmark^{+} (aq) + OH^{-} (aq) \rightarrow \checkmark^{+} (aq) + CH_{3}COO^{-} (aq) + H_{2}O (l)$ Net ionic equation: $CH_{3}COOH (aq) + OH^{-} (aq) \rightarrow CH_{3}COO^{-} (aq) + H_{2}O (l)$

The difference between strong and weak acid-base reactions: Strong acid present as ions, so it cancels out of net ionic equation. Weak acid present as molecules, so doesn't cancel out of net ionic equation.

Neutralization: What happens to pH? It approaches neutral pH

Ex 1: HCl + NaOH \rightarrow NaCl + H₂O (strong acid + strong base) (equal concentrations of HCl and NaOH mixed in equal molar quantities)

Grouping Reactions

- Exchange rxns: no oxidation number change
 - Precipitation rxns
 - Acid-base rxns
 - Acid + Base → Salt + Water
 - Gas-forming rxns
- Redox rxns: oxidation numbers change
 - Single replacement (e.g., many electrochemistry reactions)
 - Formation of compound from elements (*e.g.*, synthesis of sulfuric acid anhydride)
 - Decomposition of compound into elements (*e.g.*, producing pure metals from metal ores)
 - Combustion

What are oxidation numbers?

- A charge (sometimes real, sometimes fake) that can be assigned to each atom in a compound
 - In charged particles (ions within ionic solid, ions dissolved in water), the charge is real
 - In molecules (which are neutral), atoms don't have real charges
- Measures electron density that resides on the individual atom
 - Caveat: if the atom is in a molecule, and there is more than one of a particular kind of atom, in reality each one doesn't have the same electron density
- A model that provides an accounting method for explaining electron transfer in redox reactions

How to assign oxidation numbers

- Oxidation numbers sum to zero if compound is neutral, and total charge on ion if not neutral
- Atoms in free, neutral elements have oxidation number zero (0)
 Zn (s), Ar (g), O₂ (g), S₈ (s), Ag (s), N₂ (g)
- Charged ions have oxidation number equal to their charges FeCl₃ (s), FeCl₂ (s), Na⁺ (aq), Al³⁺ (aq), AlBr₃ (s)
- Oxygen, when in a compound or ion, nearly always has oxidation number -2 (exception: peroxides)
 Al₂O₃ (s), MgO (s), SO₄²⁻ (aq), NO₃⁻ (aq); Exceptions: H₂O₂ (l), Na₂O₂ (s)
- Hydrogen, when in a compound or ion, nearly always has oxidation number +1 (exception: hydrides)

HCl (l), H₂SO₃ (aq), CH₃COO⁻ (aq); Exceptions: CaH₂ (s), NaH (s)

Redox Reactions

Macroscopic View

- Two distinct changes occur (*e.g.*, a new solid forms and a new ionic species appears in solution)
- Two half-reactions can be separated in such a way as to produce electrical current
- Some examples
 - Iron (III) oxide + aluminum (thermite reaction) <u>http://www.jce.divched.org/JCESoft/CCA/samples/cca7thermite.html</u>
 - Sodium + chlorine <u>http://jchemed.chem.wisc.edu/JCESoft/CCA/CCA0/Movies/NACL1.html</u>
 - Magnesium + carbon dioxide <u>http://jchemed.chem.wisc.edu/JCESoft/CCA/CCA0/MOVIES/MAGCO2.html</u>

Redox Reactions Particle Level

- Process involved in a redox reaction is electron transfer
- Electron is transferred from a "donor" to an "acceptor"
- · Electrons are negatively charged
- When the "acceptor" receives the electron, its oxidation number decreases (because electrons are negative). This part of the process is called reduction.

product 🔻	reactant	Oxidation
() () () () () () () () () ()		number line
he "donor" loses the electron, its o	xidation nur	nber increases
$r \rightarrow \tau$		

 When the "donor" loses the electron, its oxidation number increases (because electrons are negative). This part of the process is called oxidation.

• The two parts of the process can only happen simultaneously, but they can be separated so that the electrons must travel through a wire.

Redox Reactions Symbolic Representation

Thermite reaction: Iron (III) oxide + aluminum

$$Fe_2O_3(s) + AI(s) \rightarrow ?$$

+3 -2 0

What are the products?

- Fe₂O₃ gets reduced to Fe metal. It gets reduced by Al. Therefore, Al is the reducing agent.
- Al metal gets oxidized to Al₂O₃. It gets oxidized by Fe₂O₃. Therefore, Fe₂O₃ is the oxidizing agent.

Redox Reactions Symbolic Representation

Sodium + chlorine

Na (s) + Cl₂ (g)
$$\rightarrow$$
 ?
0 0

What are the products?

- Cl₂ gas gets reduced to Cl⁻ ions in NaCl crystals. It gets reduced by Na metal. Therefore, Na metal is the reducing agent.
- Na metal gets oxidized to Na⁺ ions in NaCl crystals. It gets oxidized by Cl₂ gas. Therefore, Cl₂ gas is the oxidizing agent.

http://jchemed.chem.wis c.edu/JCESoft/CCA/CC A0/Movies/NACL1.html

Ranking reactivity of metals with other metal cations in aqueous solution

- Called the activity series
- Metals that are higher are more reactive, *i.e.*, will react more readily than those below them
- Example: which reaction will occur?

Mg (s) + Ni²⁺ (aq) or

Ni (s) + Mg²⁺ (aq)

TABLE 4.5 Activity Series of Metals in Aqueous Solution					
Metal	Oxidation Reaction				
Lithium	Li(s)	Li ⁺ (aq)	+	e ⁻	
Potassium	K(s)	• K*(aq)	+	e ⁻	
Barium	Ba(s)	• Ba ²⁺ (aq)	+	2e ⁻	
Calcium	Ca(s)	• Ca2+(aq)	+	2e ⁻	
Sodium	Na(s)	Na ⁺ (aq)	+	e	
Magnesium	Mg(s)	• Mg ²⁺ (aq)	+	2e ⁻	
Aluminum	Al(s) —	• Al ³⁺ (aq)	+	3e ⁻	
Manganese	Mn(s)	• Mn ²⁺ (aq)	+	2e- 2	
Zinc	Zn(s)	Zn2+(aq)	+	2e ⁻	
Chromium	Cr(s)	Cr ³⁺ (aq)	+	3e ⁻ 2	
Iron	Fe(s) —	Fe ²⁺ (aq)	+	2e- 2	
Cobalt	Co(s)	· Co ²⁺ (aq)	+	2e ⁻	
Nickel	Ni(s)	Ni ²⁺ (aq)	+	2e ⁻	
Tin	Sn(s)	• Sn ²⁺ (aq)	+	2e ⁻ 5	
Lead	Pb(s)	• Pb ²⁺ (aq)	+	2e - %	
Hydrogen	$H_2(g) \longrightarrow$	• 2 H ⁺ (aq)	+	2e- 🖽	
Copper	Cu(s) -	• Cu ²⁺ (aq)	+	2e ⁻	
Silver	Ag(s)	Ag ⁺ (aq)	+	e	
Mercury	Hg(l)	Hg ²⁺ (aq)	+	2e ⁻	
Platinum	Pt(s) —	Pt2+(aq)	+	2e ⁻	
Gold	Au(s)	Au ³⁺ (aq)	+	3e ⁻	

Copyright © 2006 Pearson Prentice Hall, Inc.

Another example: silver and copper

Which reaction will occur, based on the metal activity series?

Ag (s) + Cu²⁺ (aq)or $Ag^+(aq) + Cu(s)$

http://media.pearsoncmg.com/ph/esm/esm brown chemistry 10/irc/Ch apter 04/Present/eMedia Library/Movies/Chapter 04/Present/eMed ia Library/FormationofSilverCrystals/FormationofSilverCrystals.html

Net ionic reaction is:

Solution Concentration

- Many reactions of interest occur in aqueous solution
- To be able to quantify how much of a chemical reacts, and how much product is made, it is necessary to know quantities in moles
- In pure materials, the concentration of particles can be presented as <u>density</u>
- In mixtures that are aqueous solutions, the concentration of the particles of interest (solute) is usually presented as <u>molarity</u>
- <u>Concentration just means how many particles (of interest) are</u> present in a given amount of space
- Since Molarity = moles solute / Liter of solution, if you know the molarity and the volume of solution, you can find the moles of solute

From Chemistry & Chemical Reactivity 5th edition by Kotz / Treiche 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800-730-2215.

Need to know:

- Amount of solute (in mol)
- Amount of solution (in L)

Molarity =
$$\frac{mol \text{ of solute}}{L \text{ of solution}}$$

= $\frac{\left(25.0 \text{ } g \times \frac{1 \text{ } mol}{250. \text{ } g}\right)}{1.00 \text{ } L}$
= $0.100 \frac{mol}{L} = 0.100 \text{ } M$

Variations on the Theme

- Three variables:
 - Concentration of solution (molarity)
 - Amount of solute (moles or grams)
 - Volume of solution (liters)
- · Given any two, you can always calculate the third
 - What is the concentration of a solution made by mixing ... (solute amount) into water to make a (certain number of liters) of solution?
 - How much solute (grams?) would be required to make (certain number of liters) of a (specify concentration) molar solution?
 - What volume of a (specify concentration) molar solution must be used to obtain (solute amount)?

Reminder: Stoichiometry

$$n_A A + n_B B \rightarrow n_C C + n_D D$$

A typical scenario

Given mass of chemical A, find mass that could be produced of chemical C.

A typical scenario

Given volume of a certain molar solution of chemical A, find mass that could be produced of chemical D.

Acid-Base Titration

 $n_A \operatorname{Acid} (aq) + n_B \operatorname{Base} (aq) \rightarrow n_S \operatorname{Salt} (aq) + n_W \operatorname{H}_2 O (l)$

A typical scenario

Given volume of a certain molar solution of Acid, find concentration of the Base solution if certain volume of Base used.

