CHEM 103 Calorimetry and Hess's Law

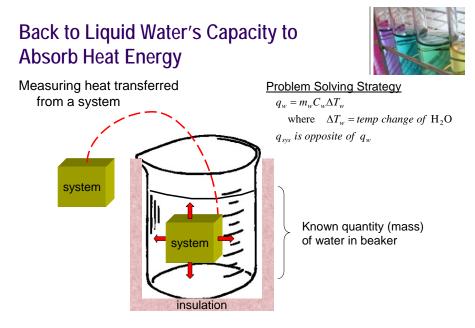
Lecture Notes March 23, 2006 Prof. Sevian

- Exam #2 is next Thursday, March 30
 - Study guide, practice exam, and practice exam answer key are already posted on the course website
 - Where to take your exam:
 - Last names starting with A-H, room M-1-207
 - Last names starting with I-Z, in our regular lecture hall
- Study guide is available at the bookstore
 - The bookstore is anxious to get the books off the shelf
- Group problem #5 from Tuesday: every team got a perfect score!

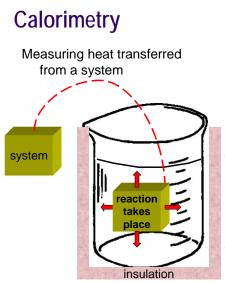
Map of this chapter

- Energy in chemistry
 - Kinetic and potential energy changes as heat energy is added to a pure substance
- First law of thermodynamics
 - Transfer of energy and the Law of Conservation of Energy
 - Endothermic vs. exothermic changes
 - Enthalpy
- Measuring heat energy (enthalpy) changes (△H) in the laboratory
 - Heat energy and heat capacity of a material
 - Calorimetry technique
- Using laboratory measurements to calculate ΔH for reactions we can't measure in the lab

Reversing the direction of a reaction


1) Formation of water

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ http://jws $\Delta H = -285.83 \text{ kJ}$


edcv.wiley.com/college/bcs/redesign/student/resource/0,12264,_0471150 584_BKS_1907__10615_3446__,00.html

2) Electrolysis of water

 $H_2O(l)$ → $H_2(g)$ + ½ $O_2(g)$ Δ*H* = +285.83 kJ http://jchemed.chem.wisc.edu/JCESoft/CCA/samples/cca3ElecW02.html

Beaker image: core.ecu.edu/chem/chemlab/ equipment/ebeaker.htm

Problem Solving Strategy

 $q_w = m_w C_w \Delta T_w$ where $\Delta T_w = temp \ change \ of \ H_2O$ q_{sys} is opposite of q_w

Given information

Mass of water = 100.0 g Temperature of water before = 23.3° C Temperature of water after = 47.3° C C_{water} = 4.184 J/g·K

100.0 g of H₂O

The confusing part is that once the change takes place, the system and the water are mixed together, and the heat energy gets distributed throughout the mixture

Beaker image: core.ecu.edu/chem/chemlab/ equipment/ebeaker.htm

Calorimetry Example

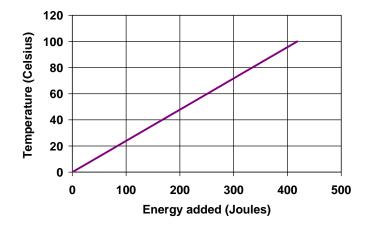
Exercise on p. 186

When 50.0 mL of 0.100 M $AgNO_3$ and 50.0 mL of 0.100 M HCI are mixed in a constant-pressure calorimeter, the temperature of the mixture increases from 22.20 °C to 23.11 °C. The temperature increase is caused by the following reaction:

Complete rxn: $AgNO_3(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_3(aq)$ Net ionic: $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

Calculate ΔH for this reaction in kJ/mol AgNO₃, assuming that the combined solution has density and heat capacity approximately equal to that of pure water since the solution is dilute. (D = 1.00 g/mL and C = 4.184 J/g.°C)

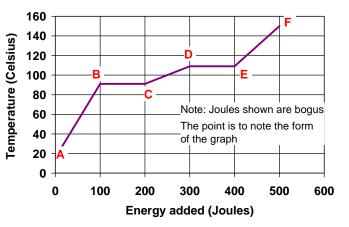
Calorimetry problems

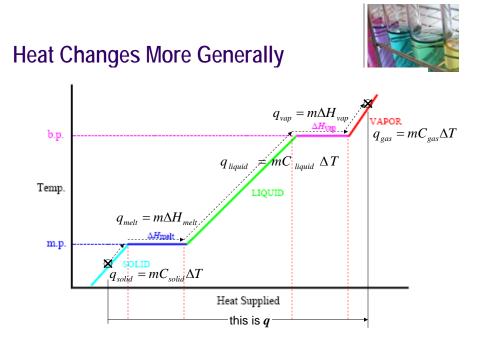

- Water is something we know a lot of very accurate data about
- Measure heat changes that get transferred to water by a (reaction) system
- Calculate amount of heat that water received from or gave to a system
- If the calorimeter is insulated, then all heat that enters (or leaves) the water must have come from (or gone to) the system being studied
- Figure out things about the system that you didn't know before

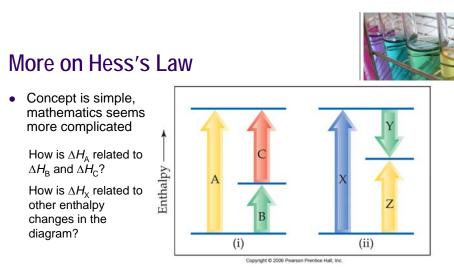


Water: A Useful Substance

- Liquid water's capacity to absorb heat (C) is enormous compared to most materials
- Heat capacity of water is very accurately known: 4.184 Joules per gram per degree Kelvin
- What this means:
 - If you have one gram of liquid water
 - To raise its temperature by 1 Kelvin (equal to 1°C)
 - Takes 4.184 Joules of energy (equal to 1 calorie)
- Since $q = m C \Delta T$, if you are working with water then you know C. Therefore, if you have a specific quantity of water, and you measure the temperature it changes by, you can calculate the heat that transferred.


What happens if you add more heat energy to liquid water at 100°C?


- It boils
- What is boiling?
 - There is a statistical range of kinetic energies (velocities) of particles in the liquid
 - Some particles will always have enough energy to break away from attractive forces that keep them in liquid → evaporation
 - As temperature rises, eventually it is high enough that so many particles can break away that their gas pressure (vapor pressure) equals the pressure of the surroundings → boiling
- Boiling continues with no change in temperature until all liquid particles have converted to gas phase


Heating Curve of 1.00-gram Sample of Some Substance (not H₂O) at Standard Pressure

- A = solid below melting*
- B = solid has reached melting temperature, and is beginning to melt*
- C = liquid at melting temperature, has just completed melting
- D = liquid has reached boiling temperature, and is beginning to boil*
- E = gas at boiling temperature, has just completed boiling*
- F = gas above boiling temperature

See http://www.chemistry.wustl.edu/~gelb/gchem/materials/phases/

 Hess's law says that △H_{rxn} for a given reaction is equal to products minus reactants of the heats of formation for the chemicals involved in the reaction

What is a heat of formation? What is a formation reaction?

- Standard heat (or enthalpy) of formation, $\Delta H_{\rm f}^{\rm o}$, is the enthalpy of reaction associated with a formation reaction
- A formation reaction for a compound is a reaction that produces one mole of that compound from the pure elements in their standard states (p=1 atm, T=25°C)

Examples:

Formation of sodium bicarbonate, NaHCO₃ (s):

Na (s) +
$$\frac{1}{2}$$
H₂ (g) + C(s) + $\frac{3}{2}$ O₂ (s) → NaHCO₃ (s) ΔH^o_f = -947.7 kJ/mol

Formation of ethylene, $C_2H_4(g)$:

$$2 \operatorname{C}(s) + 2\operatorname{H}_{2}(g) \rightarrow \operatorname{C}_{2}\operatorname{H}_{4}(g) \qquad \Delta H_{f}^{o} = +52.30 \frac{kJ}{mol}$$

Using Heats of Formation to Calculate Enthalpies of Reaction

Problem: Use standard enthalpies of formation to calculate the enthalpy of reaction for the combustion of ethanol, $C_2H_5OH(l)$.

Solution: Start by writing the reaction

 $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ $\Delta H_f^o = ?$

Method 1: Write all the formation reactions for any non-elements at standard state. Then figure out how to arrange those reactions to sum to the overall reaction and do the same to the ΔH s.

Method 2: Use the equation
$$\Delta H_{rxn}^{o} = \sum_{products} \Delta H_{f}^{o} - \sum_{reactants} \Delta H_{f}^{o}$$