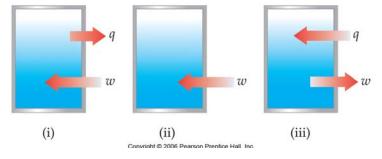
CHEM 103 Energy in Chemical Systems

Lecture Notes March 21, 2006 Prof. Sevian

Map of this chapter


- Energy in chemistry
 - Kinetic and potential energy changes as heat energy is added to a pure substance
- First law of thermodynamics
 - Transfer of energy and the Law of Conservation of Energy
 - Endothermic vs. exothermic changes
 - Enthalpy
- Measuring heat energy (enthalpy) changes (△H) in the laboratory
 - Heat energy and heat capacity of a material
 - Calorimetry technique
- Using laboratory measurements to calculate ΔH for reactions we can't measure in the lab

Energy content or Internal energy, E

- Sum of the kinetic and potential energies of all the particles in the system
- Can change in only two ways:
 - When heat (q) is transferred to the system (from the surroundings)
 - When work (w) is done on the system (by the surroundings)

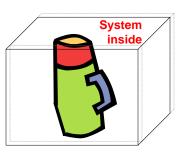
For the systems below, describe what is happening to ΔE

Heat is only part of *E*, work is the rest

- In most chemistry systems, we are concerned with enthalpy (*H*), not internal energy (*E*)
- In systems where the pressure is constant (i.e., most laboratory experiments), ΔH = q
- Endothermic and exothermic designations refer ONLY to the sign of the heat transfer (q)
- Fortunately, it simplifies matters to talk about ΔH instead of ΔE

For the systems in the previous diagram, determine whether each one is endothermic or exothermic

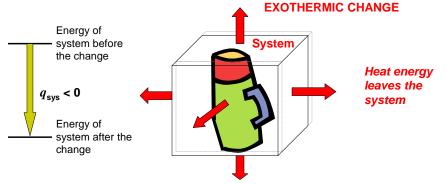
Thermodynamics


- The study of heat (a.k.a., thermal energy)
- Theoretical model is built on taking averages (using statistics) of multiple possible arrangements of particles
- The most important question: What <u>could</u> the particles do?
- If heat energy transfers, it must transfer *from* something *to* something else
- Involves being able to draw imaginary boundaries around a "system"

What is a System?

• A "system" is a 3-dimensional space, surrounded by an imaginary surface boundary, such that no <u>matter</u> passes through the boundary, but <u>heat energy</u> can transfer freely across the boundary

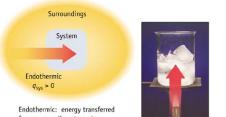
Surroundings outside



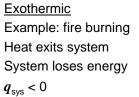
What happens to the SYSTEM when heat transfer occurs?

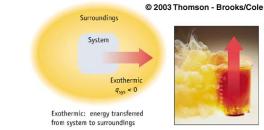
- As coffee eventually cools, heat energy is transferred to the air around the thermos and the counter beneath it.
- System: Particles in the coffee slow down their motion.
- Surroundings: Particles in the air, and particles in the counter, speed up their motion.

Conservation of Energy


- When heat energy enters or leaves matter, energy is conserved.
- This means energy has to come from somewhere, and it has to go somewhere. It can be accounted for.
- Particle level: energy can go into or come out of the system, thereby increasing or decreasing the energy in the particles
 - Kinetic energy: motion of particles (translation, vibration, rotation) in solid, liquid and gas states
 - · Potential energy: electron states in atoms or within bonds

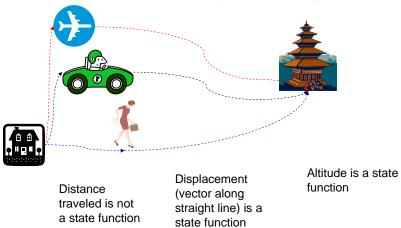
Endothermic vs. Exothermic

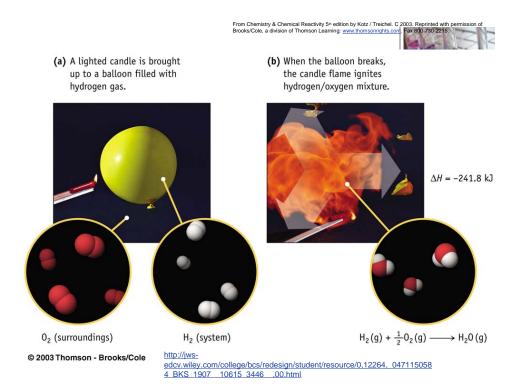

Endothermic Example: ice melting Heat enters system System gains energy

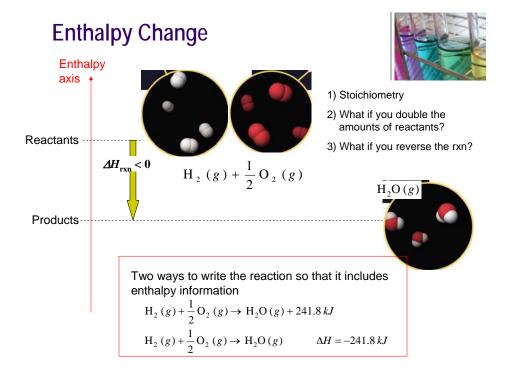

n gy

from surroundings to system

 $\boldsymbol{q}_{\mathrm{sys}}$ > 0




From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel. C 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: <u>www.thomsonrights.com</u>, Fax 800-730-2215.


Alternative Pathways

"State function" doesn't depend on the path taken

Important things to know about state functions like ΔH and ΔE

1. The delta (Δ) always means change from initial to final, calculated as "final minus initial."

 $\Delta H_{\rm rxn} = H ({\rm products}) - H ({\rm reactants})$

Therefore, when ΔH is positive, it means the products were higher than the reactants

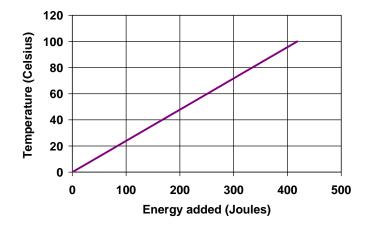
- 2. Reversing a reaction means changing the sign of the state function, since products and reactants are switched.
- 3. ΔH_{rxn} can be given in two ways: as kJ or as kJ/mol. If it is given in kJ, then it depends on the amount of reactant.
- 4. The physical states of the chemicals in the reaction matter.

$2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(l)$	$\Delta H_{\rm rxn}$ = -571.66 kJ
$2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)$	$\Delta H_{\rm rxn}$ = -483.64 kJ

• How do we measure heat lost or gained by a system?

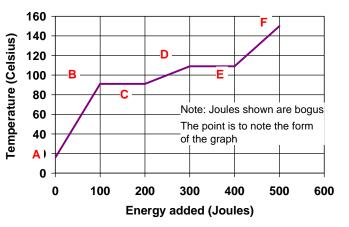
Object at room temp 25°C

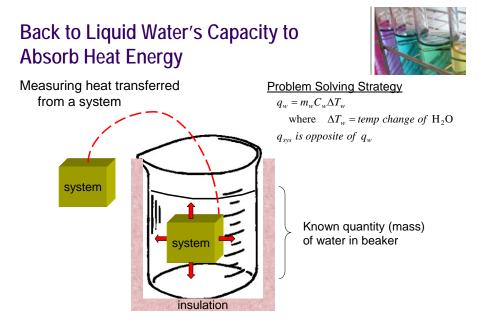
- What does the quantity of heat transferred depend on?
 - Quantity of material in the object
 - Size of temperature change
 - Identity of the material the object is made from



Water: A Useful Substance

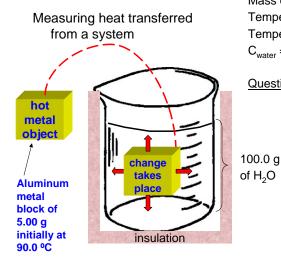
- Liquid water's capacity to absorb heat (C) is enormous compared to most materials
- Heat capacity of water is very accurately known: 4.184 Joules per gram per degree Kelvin
- What this means:
 - If you have one gram of liquid water
 - To raise its temperature by 1 Kelvin (equal to 1°C)
 - Takes 4.184 Joules of energy (equal to 1 calorie)
- Since $q = m C \Delta T$, if you are working with water then you know C. Therefore, if you have a specific quantity of water, and you measure the temperature it changes by, you can calculate the heat that transferred.


What happens if you add more heat energy to liquid water at 100°C?


- It boils
- What is boiling?
 - There is a statistical range of kinetic energies (velocities) of particles in the liquid
 - Some particles will always have enough energy to break away from attractive forces that keep them in liquid → evaporation
 - As temperature rises, eventually it is high enough that so many particles can break away that their gas pressure (vapor pressure) equals the pressure of the surroundings → boiling
- Boiling continues with no change in temperature until all liquid particles have converted to gas phase

Heating Curve of 1.00-gram Sample of Some Substance (not H₂O) at Standard Pressure

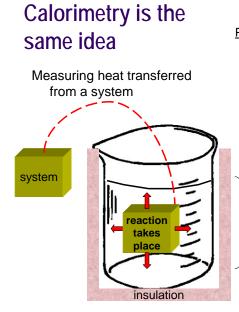
- A = solid below melting*
- B = solid has reached melting temperature, and is beginning to melt*
- C = liquid at melting temperature, has just completed melting
- D = liquid has reached boiling temperature, and is beginning to boil*
- E = gas at boiling temperature, has just completed boiling*
- F = gas above boiling temperature



See http://www.chemistry.wustl.edu/~gelb/gchem/materials/phases/

Beaker image: core.ecu.edu/chem/chemlab/ equipment/ebeaker.htm

A hot metal block placed in cold water



<u>Given information</u> Initial temperature of Al block = 90.00° C Mass of Al block = 5.00 gMass of water = 100.0 gTemperature of water before = 23.00° C Temperature of both after = 23.71° C C_{water} = 4.184 J/g·K

Question: What is the heat capacity of Al?

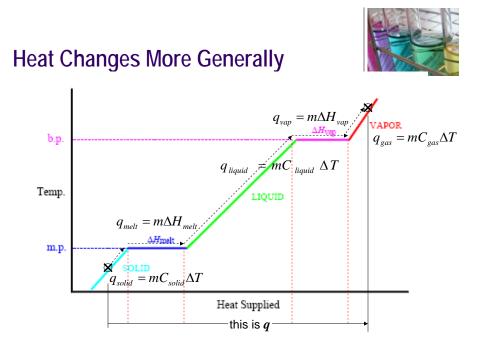
Problem Solving Strategy $q_w = m_w C_w \Delta T_w$ where $\Delta T_w = temp \ change \ of \ H_2O$ $q_{sys} \ is \ opposite \ of \ q_w$

Beaker image: core.ecu.edu/chem/chemlab/ equipment/ebeaker.htm

<u>Problem Solving Strategy</u> $q_w = m_w C_w \Delta T_w$ where $\Delta T_w = temp \ change \ of \ H_2O$ $q_{sys} \ is \ opposite \ of \ q_w$

> <u>Given information</u> Mass of water = 100.0 g Temperature of water before = 23.3° C Temperature of water after = 47.3° C C_{water} = 4.184 J/g-K

100.0 g of H₂O


The confusing part is that once the change takes place, the system and the water are mixed together, and the heat energy gets distributed throughout the mixture

Beaker image: core.ecu.edu/chem/chemlab/ equipment/ebeaker.htm

Calorimetry problems

- Water is something we know a lot of very accurate data about
- Measure heat changes that get transferred to water by a (reaction) system
- Calculate amount of heat that water received from or gave to a system
- If the calorimeter is insulated, then all heat that enters (or leaves) the water must have come from (or gone to) the system being studied
- Figure out things about the system that you didn't know before

