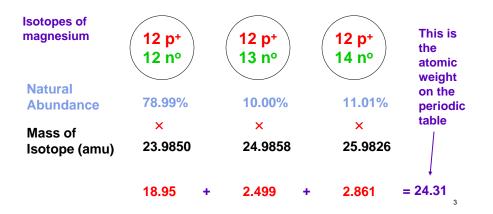
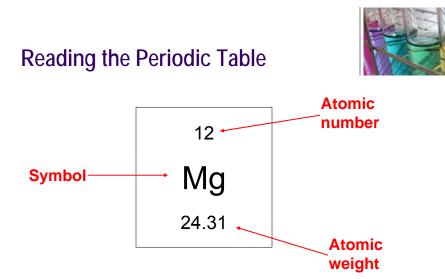
CHEM 103 Naming Compounds

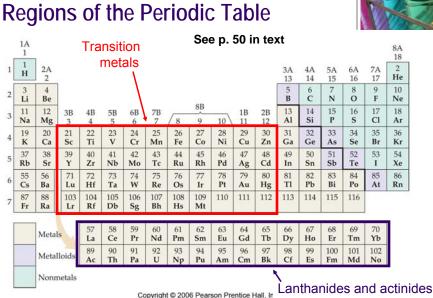
Lecture Notes February 7, 2006 Prof. Sevian

1

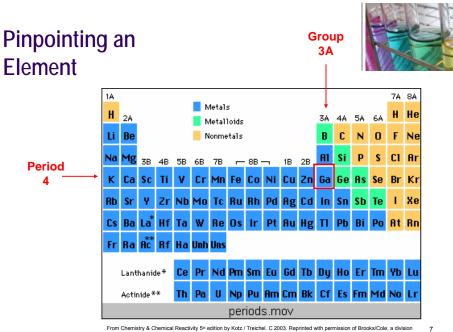
2


Agenda

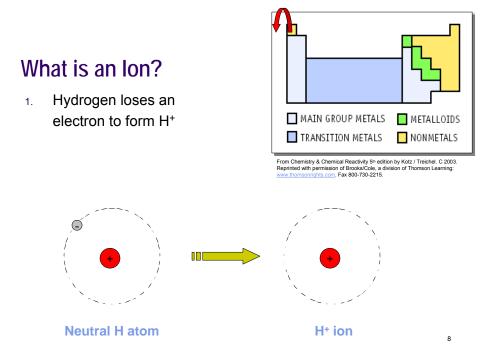

- How we name compounds depends on what kind of compounds they are
- Ionic compounds
- Molecular compounds
- Acids are molecular compounds that sometimes behave like ionic compounds, and the positive ion is always H⁺

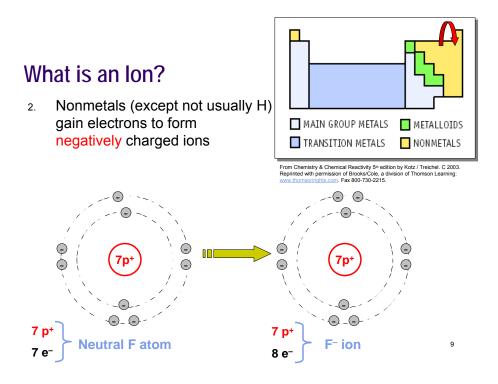

Isotopes and Natural Abundances

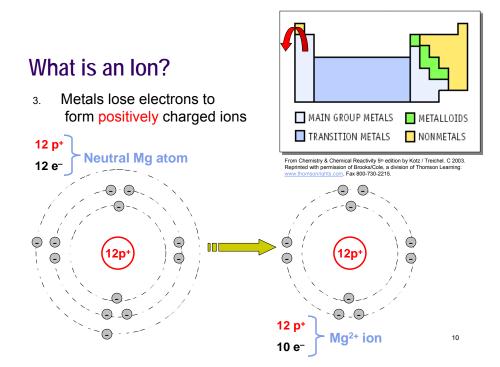
The mass of a typical sample of an element is a weighted average of the masses of the isotopes



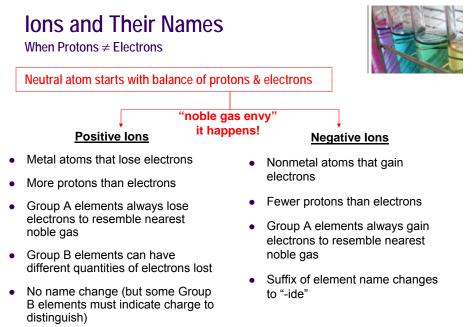
Organization of the Periodic Table


6

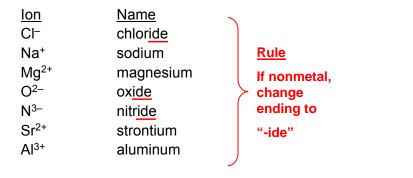

Terminology we will use all year

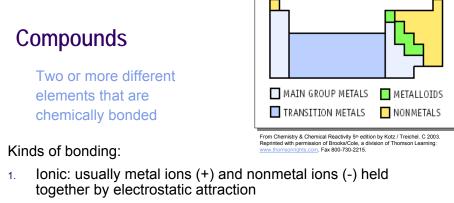

- Period = row across
- Group = column down Several common groups
 - Group 1A: Alkali metals
 - Group 2A: Alkaline earth metals
 - Group 7A: Halogens
 - Group 8A: Noble gases
 - Groups B: Transition metals
- Early chemists (Mendeleev, Moseley) organized the Periodic Table according to properties of elements
- There are reasons why the Periodic Table is organized the way it is (stay tuned until chapters 6 and 7)

From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel. C 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800-730-2215.



Atoms lose or gain electrons to have same number of electrons as nearest Group 8A element


12



14

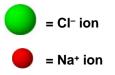
Names of Common lons

Find these elements on the Periodic Table and convince yourself why they take the charges they do.

- 2. Molecular: usually nonmetals held together because proximity of outer electrons on the atoms causes new bonding "orbitals" to exist which have more favorable conditions for electrons
- 3. Other

Ionic vs. Molecular Compounds

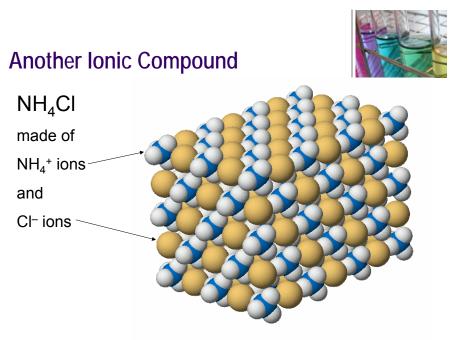
- For simplicity, let's compare some ionic and molecular compounds in the solid state
- Ionic compounds: NaCI = table salt, also called sodium chloride NH₄CI = ammonium chloride
- Molecular compounds: H₂O (s) = ice C₁₂H₂₂O₁₁ = sucrose


How do their macroscopic properties compare?

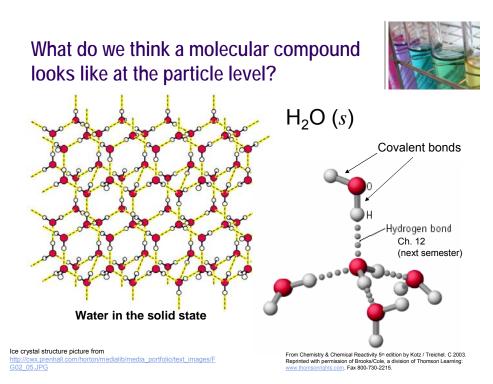
What do we think an ionic compound looks like at the particle level?

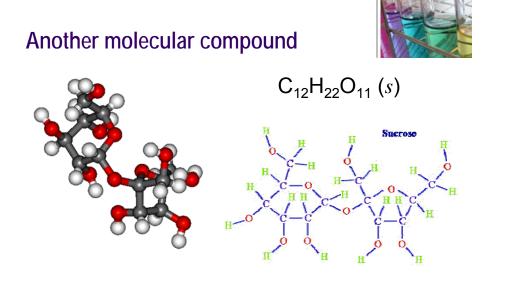
15

- Regular, repeating lattice structure
- Positive and negative ions held by attractive electrostatic force
- Every + ion surrounded by ions
- Every ion surrounded by + ions

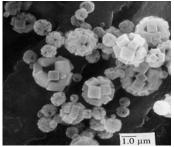


Note: Model shows a solid. Ionic bonds are very strong, so it takes a lot of energy to make them molten (liquid). In the liquid state, the ions are free to move about.

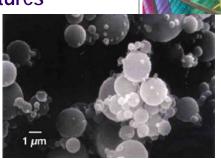

From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel. C 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800-730-2215.



NaCI, salt ¹⁶



From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel. C 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800-730-2215.



NaCl vs. Sucrose scanning electron microscope (SEM) "pictures"

NaCl (s) dried from a 10% aqueous solution

 $C_{12}H_{22}O_{11}$ (s) dried from a 5% aqueous solution

 $1 \mu m = 10^{-6} m$ and $1 nm = 10^{-9} m$ For comparison:

- Na-Cl internuclear distance = 0.56 nm, therefore in 1 μm fit about 1800 Na-Cl units across
- Diameter of a sucrose molecule \approx 1 nm, therefore in 1 μm fit about 1000 sucrose molecules lengthwise

(Images from http://www.temcoinstruments.com/applications.html)

What you need to understand about bonding for now

Ionic Compounds

- Contain ions
- Held together by electrostatic attraction between + and – ions
- Ionic formula: simply the ratio of ions present in order for the compound to be neutral, cannot separate a unique unit

Molecular Compounds

- Do not contain ions
- Molecules held together by covalent bonds in which electrons from both atoms are attracted to the nuclei of both atoms in a bond
- In a molecular solid, one molecule held to the next by weaker forces of attraction
- Molecular formula: can
 separate unique molecules

What's a Chemical Formula?

- Whole-number ratio of elements present in a compound H₂O CO₂ Na₂C₂O₄ KMnO₄
- Parentheses indicate groups (ions, functional groups, repeating groups)
 Mg(C₂H₃O₂)₂ C(CH₃)₃Cl CH₃(CH₂)₄CH₃
- Numbers follow (they don't precede) $H_2O = H_2O_2$

22

... distinguish between ionic and molecular compounds so that you can name them.

You need to be able to...

AICI₃ NH₃ NH₄CI C₆H₁₂O₆ NaCH₃COO

> Ionic compounds contain ions
> Molecular compounds have only nonmetals in them

24

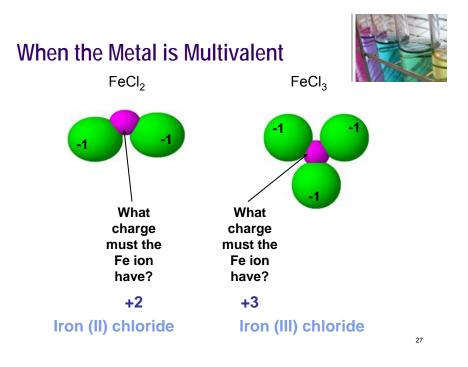
Common lons

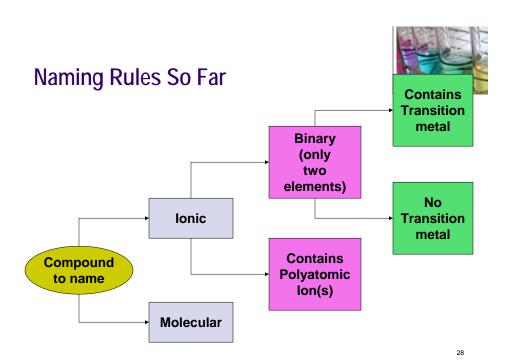
- Monatomic
 - Group A elements have only one possible charge
 - Group B elements (transition metals) usually have more than one possible charge
- Polyatomic
 - See pp. 62 and 64 for lists of ions you need to memorize (name, formula, charge)

Naming Conventions

1. Ionic compounds NaCl Na₂CO₃ NH₄Br FeCl₃ FeCl₂ Mg(C₂H₃O₂)₂ Agl CuSO₄

26

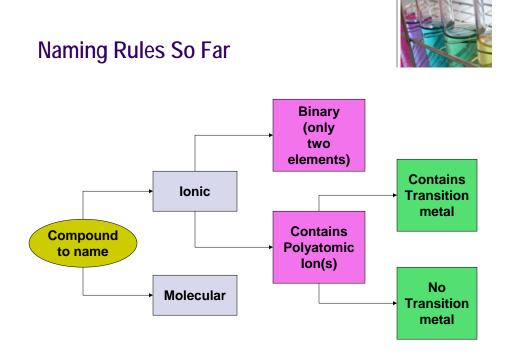

25

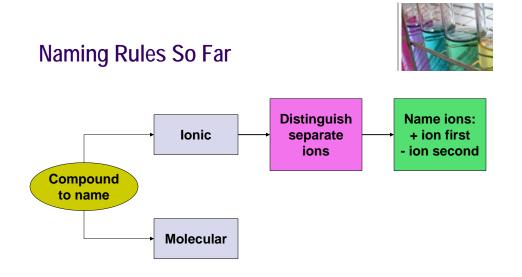

Naming Conventions

 Ionic compounds - binary NaCl sodium chloride

FeCl ₃	iron (III) chloride
FeCl ₂	iron (II) chloride

AgI silver iodide




Naming Conventions

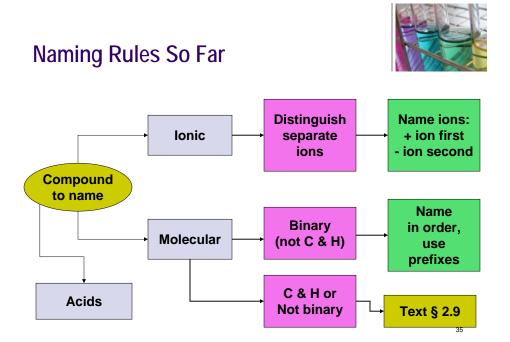
1. Ionic compounds – contains polyatomic

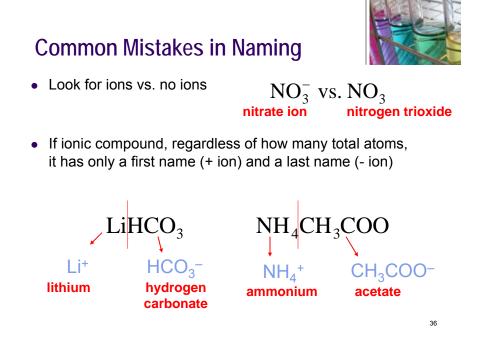
Na ₂ CO ₃	sodium carbonate
NH ₄ Br	ammonium bromide

- $Mg(C_2H_3O_2)_2$ magnesium acetate
- CuSO₄ copper (II) sulfate

Naming Conventions

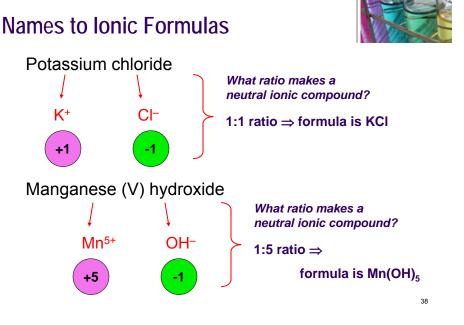
- 2. Molecular compounds
 - NO₂ nitrogen dioxide
 - NO₃ nitrogen trioxide
 - N₂O₄ dinitrogen tetroxide
 - CO carbon monoxide
 - CO₂ carbon dioxide
 - P₂O₅ diphosphorus pentoxide
 - CH₄ methane

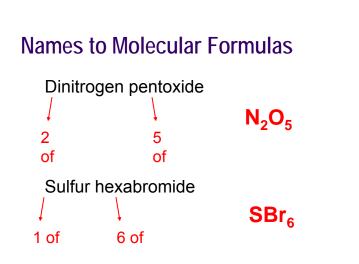

C₂H₆ ethane


Read section 2.9 in your text – you will be responsible for knowing how to name simple organic compounds

Counting to 10 in Greek to name binary molecular compounds

- 1. Mono
- 2. Bi
- з. **Tri**
- 4. Tetr(a)-
- 5. Pent(a)-
- 6. Hex(a)-
- 7. Hept(a)-
- 8. Oct(a)-
- 9. Non(a)-
- 10. Dec(a)-





Writing Formulas

- Formulas to names
 - Determine whether ionic or molecular
 - If ionic, name = (positive ion) (negative ion)
 - If molecular, use prefixes
 - Acids are special (name them backwards)
- Names to formulas
 - Translate the formula
 - If ionic, find ions, then balance charges
 - If molecular, read the prefixes
 - Acids are special (translate backwards)

Practice

Name these compounds $NaNO_3$ (NH₄)S CrPO₄ N₂O

Write formulas Calcium iodide Selenium trioxide Strontium hypochlorite Iron (III) oxalate

42

40

Naming Conventions

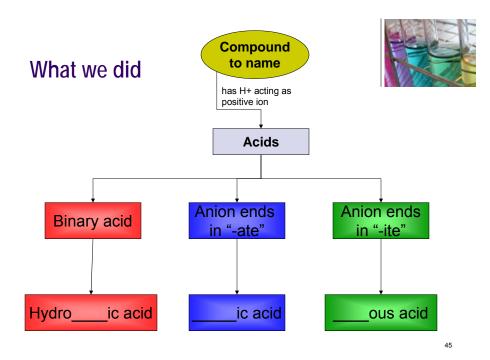
3.	Acids	They look like ionic compounds, except that the positive ion is always H ⁺
	HCI	
	H ₂ CO ₃	
	HBr	
	HOCI	What would you name them if they were ionic compounds?
	HCIO	
	$HC_2H_3O_2$	
	$C_2H_3O_2H$	
	HNO ₂	
	HNO ₃	

If acids were ionic compounds...

3.	Acids
3.	Acids

HCI	Hydrogen chloride
H_2CO_3	Hydrogen carbonate
HBr	Hydrogen bromide
HOCI	Hydrogen hypochlorite
HCIO	Hydrogen hypochlorite
$HC_2H_3O_2$	Hydrogen acetate
$C_2H_3O_2H$	Hydrogen acetate
HNO ₂	Hydrogen nitrite
HNO ₃	Hydrogen nitrate

But they're not, so here's how to name acids properly



44

43

3. Acids

HCI	-Hydrogen chloride-	Hydrochloric acid
H_2CO_3	-Hydrogen carbonate	Carbonic acid
HBr	Hydrogen bromide	Hydrobromic acid
HOCI	Hydrogen hypochlorite	Hypochlorous acid
HCIO	Hydrogen hypochlorite	
$HC_2H_3O_2$	Hydrogen acetate	Acetic acid
$C_2H_3O_2H$	Hydrogen acetate	
HNO ₂	Hydrogen nitrite	Nitrous acid
HNO ₃	Hydrogen nitrate	Nitric acid

Naming Conventions Summary

First determine if the compound is ionic, molecular, or acid.

- 1. Ionic compounds
 - a) Binary or contain polyatomic ion(s)?
 - b) Can the metal cation have more than one oxidation state?
- 2. Molecular compounds
 - a) Binary (except not C and H)
 - b) Hydrocarbons (contains C and H)
- 3. Acids
 - a) Binary
 - b) Anion ends in "-ate"
 - c) Anion ends in "-ite"