CHEM 103 Aqueous Solutions

Lecture Notes February 28, 2006 Prof. Sevian

2

Agenda

- What is a solution made of?
- Solubility of ionic compounds (salts), acids, and molecular compounds
- Exchange reactions that produce a precipitate
- Complete vs. net ionic reactions

Solutions

- Almost nothing in nature occurs naturally as a pure substance
- Most chemical reactions of interest take place in <u>solution</u>, between chemicals that are dissolved in water
- Medium in which something is dissolved is called a <u>solvent</u>
- Water is often called the "universal solvent"
 - It is possible to have solvents other than water (*e.g.*, tincture of iodine is solid iodine crystals dissolved in ethanol)
 - It is possible to have solutions that are not liquids (*e.g.*, air is a bunch of different gases dissolved in N₂)
- The chemical that dissolves is called the solute
- In this course, we will focus on aqueous solutions

3

What is electrical conductivity?

- Electrical = charged parts due to electrons not balanced with protons on particles
- Conductivity = parts can circulate so that complete circuit can form

Two conditions exist for something to be electrically conductive:

- 1. Must have charged parts
- 2. The parts must be mobile

Demonstrat	ion		
	Has charged parts?	Parts can move?	Electrically conductive?
Pure water			
Aqueous sugar solution			
Salt crystals at room temperature			
Aqueous salt solution			

Electrolytes

Electro – lyte (electricity) – (break apart)

From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel, C 2003. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: <u>www.thomsonrights.com</u>. Fax 800-730-2215.

NaCI, salt

Copyright © 2006 Pearson Prentice Hall, Inc.

When ions dissolve into water

(how? stay tuned 'til ch. 13)

Copyright © 2006 Pearson Prentice Hall, Inc.

A particle level view of the solution process

http://media.pearsoncmg.com/ph/esm/esm brown chemistry 10/irc/Chapter 13/Present/eMedia Library/Animations/C 9 hapter_13/Present/eMedia Library/DissolutionofNaClinWater/DissolutionofNaClinWater.html

Some lons Dissolve in Water Better Than Others

10

Definitions are fuzzy

Very soluble

• More than 0.10 mol can dissolve in 1 L of water

Moderately soluble

• Something in between

Pretty much insoluble

Less than 0.01 mol can dissolve in 1 L of water

Solubility guidelines

If one ion from the "Soluble Compounds" list is in an ionic compound, then the ionic compound will dissolve in water

11

TABLE 4.1 Solubility Guidelines for Common Ionic Compounds in Water				
Soluble Ionic Compounds		Important Exceptions		
Compounds containing	NO ₃ ⁻	None		
	$C_2H_3O_2^-$	None		
	Cl ⁻	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺		
	Br ⁻	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}		
	I^-	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}		
	SO_4^{2-}	Compounds of Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺		
Insoluble Ionic Compounds		Important Exceptions		
Compounds containing	S ²⁻	Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺		
	CO3 ²⁻	Compounds of NH4 ⁺ and the alkali metal cations		
	PO4 ³⁻	Compounds of NH4 ⁺ and the alkali metal cations		
	OH-	Compounds of the alkali metal cations, and NH_4^+ , Ca^{2+} , Sr^{2+} , and Ba^{2+}		

Copyright © 2006 Pearson Prentice Hall, Inc.

The Chemical Process Industries

Top chemicals produced in the U.S. in 2003

Sulfuric acid Nitrogen gas	$\begin{array}{c} 37.1\times10^6 \text{ metric tons} \\ 26.8\times10^6 \text{ m}^3 \end{array}$
Ethylene	$23.0\times10^6\ metric\ tons$
Oxygen gas	$19.6\times10^6m^3$
Hydrogen gas	$14.3\times10^6\ m^3$
Propylene	13.9×10^6 metric tons
Phosphoric acid,	as P ₂ O ₅
	11.0×10^6 metric tons
Chlorine gas	$10.7 imes 10^6 \text{ m}^3$
Ammonia gas	$10.7\times10^6\ m^3$
Ammonia gas Sodium hydroxide	$10.7 \times 10^6 \text{ m}^3$
Ammonia gas Sodium hydroxide	$10.7\times10^6\ m^3$ 8.7 $\times10^6\ metric tons$

From Chemical & Engineering News, "Facts & Figures" 2004, http://pubs.acs.org/cen/coverstory/8227/pdf/8227fandf_production.pdf

Sulfuric Acid

• Produced by burning iron pyrites or sulfur in air:

$$S_8 + O_2 \rightarrow SO_2$$

then reacting sulfur dioxide in the presence of a catalyst with more oxygen to produce sulfur trioxide:

$$SO_2 + O_2 \rightarrow SO_3$$

and finally reacting sulfur trioxide with water to make sulfuric acid:

$$SO_3 + H_2O \rightarrow H_2SO_4$$

- · Involved in the production of nearly all manufactured goods
- Used primarily in production of fertilizers (lime, ammonium sulfate)
- Also used in production of other acids, sulfate salts, detergents, dyes & pigments, explosives, drugs
- Other uses include washing gasoline, processing metals, making rayon
- Serves as electrolyte in lead-acid storage battery

14

13

What Kinds of Changes?

How can you tell if a change occurs?

Evidence

Chemical vs. Physical Change

Three Views of Change

- 1. Macroscopic
 - What we observe in the laboratory
- 2. Particle level
 - Model of what we believe is happening that produces the changes we see
- 3. Symbolic
 - How we represent the model

Macroscopic Level: How Can You Tell If There Is a Chemical Change?

16

15

- We say a chemical reaction has occurred <u>if</u> a chemical is formed that was not present before
- Evidence of chemical change can be:
 - Solid appears (precipitate)
 - Gas forms: bubbles, odor
 - Color change (usually when a solid reacts with chemical dissolved in a solution)
- (Confusing) Other evidence of change that could indicate either chemical or physical change:
 - Heat released (feels warm)
 - Heat absorbed (feels cold)
 - One of the chemicals changes phase (changes to solid, liquid or gas of itself) because the temperature changed

Macroscopic Level: Classifying Chemical Reactions Based on Evidence Observed

Consider <u>only</u> reactions that occur in aqueous solutions

- 1. Precipitation reactions
 - Formation of a precipitate (solid) where there wasn't one before
- 2. Acid-base reactions
 - pH of product solution is different from the pH's of the reactant solutions
- 3. Oxidation-reduction (redox) reactions
 - If the reactions are separated in a special way, electricity can be generated
- *Categories are not unique, in part because 1 and 2 are based on evidence, but 3 is based on particle-level model

17

18

History of Classes of Reactions

- Names of "classes" of chemical reactions reflects the history of understanding them
- Macroscopic = properties observed in laboratory
 - Precipitation
 - Acid-base
 - Combustion
- Particle level = model of underlying process
 - Redox

Particle Level Chemical Reactions

- It is called a "chemical reaction" only if a chemical change occurs
- Chemical changes are ALWAYS about ELECTRONS
- Four kinds of processes involved
 - Transfer of a "proton" (a naked hydrogen atom) from one chemical species to another
 - Sharing of electron pairs between chemical species
 - Transfer of an electron from one chemical species to another
 - Sharing of single electrons between chemical species

Some Types of Reactions (According to Your Textbook)

- 1. Precipitation reactions
- 2. Acid-base reactions
- 3. Oxidation-reduction reactions
- 4. (Combustion reactions)

Some other ways to categorize reactions

- Based on patterns in the chemical equations
 - Exchange, single replacement, S_N1, S_N2, condensation polymerization, etc.
- Based on functional groups that get replaced
 - Halide-alcohol exchange, others

19

Precipitation Rxns Macroscopic View

- An insoluble compound forms, usually from two soluble compounds (dissolved in water) that react in aqueous solution
- The insoluble compound precipitates
- The insoluble compound can be white or colored
- When the insoluble compound precipitates, it leaves the solution, thereby causing more reaction to occur between reactants
- Some examples
 - http://www.jce.divched.org/JCESoft/CCA/samples/index.html
 - Sodium iodide + mercury (II) chloride
 - Cadmium nitrate + sodium sulfide

Precipitation Rxns Symbolic Representation

22

21

Sodium iodide + mercury (II) chloride

 $2 \text{ NaI} + \text{HgCl}_2 \rightarrow \text{HgI}_2 + 2 \text{ NaCl}$

 $2 \operatorname{NaI}(aq) + \operatorname{HgCl}_2(aq) \rightarrow \operatorname{HgI}_2(s) + 2 \operatorname{NaCl}(aq)$

sodium iodide + mercury (II) chloride \rightarrow mercury (II) iodide + sodium chloride

Many names for this pattern:

- Exchange reaction
- Metathetical reaction
- Double displacement reaction
- Double replacement reaction

Sodium iodide + mercury (II) chloride

Net reaction: two $I^{\scriptscriptstyle -}$ ions + one $Hg^{2\scriptscriptstyle +}$ ion \rightarrow one unit of HgI_2 ppt

2 I⁻ (aq) + Hg²⁺ (aq) \rightarrow HgI₂ (s)

24

23

Complete equation vs. Net ionic eqn

 $2 \operatorname{NaI}(aq) + \operatorname{HgCl}_2(aq) \rightarrow \operatorname{HgI}_2(s) + 2 \operatorname{NaCl}(aq)$

 $2 \mathsf{I}^{-}(aq) + \mathsf{Hg}^{2+}(aq) \to \mathsf{HgI}_{2}(s)$

25

Writing Net Ionic Equations

- 1. Start with the balanced reaction, written with phases
- Identify ions in aqueous solution, ionic solids that precipitate, and any molecules on both sides of the arrow
- 3. Cross out any spectator ions
- 4. What's left is the net ionic equation

2 I⁻ (aq) + Hg²⁺ (aq) \rightarrow HgI₂ (s)

You Try It Write the Net Ionic Equation

Cadmium nitrate + sodium sulfide

cadmium nitrate + sodium sulfide \rightarrow cadmium sulfide + sodium nitrate

$$Cd(NO_3)_2(aq) + Na_2S(aq) \rightarrow CdS(s) + 2 NaNO_3(aq)$$

Net reaction:

27