CHEM 103 Limiting Reagents

Lecture Notes February 21, 2006 Prof. Sevian

1

Chem 103

Please sit with your groups today. We will be doing a group problem at the end of class.

Agenda

- Limiting reagent problems
- Combustion analysis

4

3

Announcements

- First exam is this Thursday, Feb 23
 - Most important rules to know...
- One-third of the class will be in an overflow room.
 - Last names beginning A-H in room ...
 - Last names beginning I-Z here in small science auditorium
- Posted on the course website:
 - Practice exam #1
 - Answer key to practice exam #1
 - Study guide
- ACS exam study guide is/is not at the bookstore?

5

Quantitative Analysis in the Lab

- Determine the composition of a mixture
 - React one substance in the mixture according to a known reaction.
 - Measure results of reaction.
 - Use stoichiometry to determine how much of original substance was present.
- Determine the empirical formula of an unknown chemical
 - React the substance and measure amounts of different chemical products.
 - Use stoichiometry to determine moles of elements present in original sample.
 - Find empirical formula from ratio of moles.

Composition of a Mixture

- Products of the reaction must be known
- If you can measure the mass of one of the products, then you can use stoichiometry to determine how much of the original reactant was present
- Examples: product is a gas or precipitate

Example: Gravimetric Analysis

A mixture of unknown percentage composition of white $BaCl_2 \bullet 2H_2O$ crystals and white $Na_2SO_4 \bullet 10H_2O$ crystals is provided. How could you determine the percent composition of the mixture?

- 1. How could you get a reaction to occur?
- 2. What reaction would occur?
- 3. What would you need to measure?
- 4. How would you measure it?
- 5. What information could you calculate by knowing that?
- 6. What additional information might you need?

Limiting Reactants

8

- If you use an excess of one reactant, it is more likely that <u>all</u> of the other reactant will be used up in the chemical reaction.
- The reactant that is in excess will be present in the final products, since it didn't all get used up.

To build a semi tractor-trailer requires:

18 wheels + 5 axles + 4 cylinders + 1 pigeon \rightarrow 1 semi Let's say you have in stock:

• 198 wheels × (1 semi)/(18 wheels) = 11 semis possible

- 100 axles × (1 semi)/(5 axles) = 20 semis possible
- 100 cylinders × (1 semi)/(4 cylinders) = 25 semis possible
- 18 pigeons × (1 semi)/(1 pigeon) = 18 semis possible

Maximum quantity of semis you could produce is 11

How many semis could you produce?

LIMITING REACTANT

18 wheels + 5 axles + 4 cylinders + 1 pigeon \rightarrow 1 semi After you build 11 semis, what remains of the 198 wheels, 100 axles, 100 cylinders, and 18 pigeons?

	18	5	4	1	\rightarrow	1
	wheels	axles	cylinders	pigeon		semi
Initial	198	100	100	18		0
Change	-198	-(11×5)	-(11×4)	-(11×1)		+11
Final	0	45	56	7		11

What was actually in the barium chloride + sodium sulfate mixture

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow 2 NaCl(aq) + BaSO_4(s)$

 $5.00g \text{ BaCl}_2 \bullet 2\text{H}_2\text{O} \times \frac{1 \, mol \text{ BaCl}_2 \bullet 2\text{H}_2\text{O}}{244.2g \text{ BaCl}_2 \bullet 2\text{H}_2\text{O}} \times \frac{1 \, mol \text{ BaCl}_2}{1 \, mol \text{ BaCl}_2 \bullet 2\text{H}_2\text{O}} = 0.0205 \, mol \text{ BaCl}_2$

 $5.00g \text{ Na}_2\text{SO}_4 \bullet 10\text{H}_2\text{O} \times \frac{1 \text{ mol Na}_2\text{SO}_4 \bullet 10\text{H}_2\text{O}}{322.3g \text{ Na}_2\text{SO}_4 \bullet 10\text{H}_2\text{O}} \times \frac{1 \text{ mol Na}_2\text{SO}_4}{1 \text{ mol Na}_2\text{SO}_4 \bullet 10\text{H}_2\text{O}} = 0.0155 \text{ mol Na}_2\text{SO}_4$

moles	BaCl ₂	Na ₂ SO ₄	\rightarrow	2 NaCl	BaSO₄
Initial	0.0205	0.0155		0	0
Change					
Final					

Chemical Analysis

- 1. Unknown quantity of a known substance
 - Two known chemicals react to exactly the point of completion
 - · Quantity of one of them is known
 - Determine quantity that must have been present of the other one
 - Example: titration
- 2. Known quantity of an unknown substance
 - A specific amount of an unknown substance reacts
 - Known products are formed, and their quantities are measured
 - Determine empirical formula of the unknown reactant from this information
 - · Examples: gravimetric analysis, combustion analysis

Combustion Analysis

Unbalanced reaction is

Sample (containing C, H, and O) + $O_2 \rightarrow H_2O$ + CO_2

- Excess O₂ used, so that all of the sample reacts
- CuO ensures that any carbon monoxide converts to carbon dioxide
- Water absorber is usually Mg(ClO₄)₂
- Carbon dioxide is usually collected by sodium hydroxide on asbestos

Picture from http://itl.chem.ufl.edu/2045_s00/lectures/lec_4.html

Combustion Analysis

Mass of $H_2O \rightarrow Moles$ of $H_2O \rightarrow Moles$ of H atoms present in original sample Mass of $CO_2 \rightarrow Moles$ of $CO_2 \rightarrow Moles$ of C atoms present in original sample

(Mass of original sample) – (Mass of H atoms + Mass of C atoms)

= Mass of O atoms, if present in original sample

→ Moles of O atoms present in original sample

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(a) What is the empirical formula for butane?

Chemical reaction is

butane + $O_2 \rightarrow CO_2$ + H_2O

Strategy:

- Empirical formula means ratio of moles
- Need to know moles of C, moles of H (and possibly moles of O)
- Get moles of C from mass of CO₂
- Get moles of H from mass of H₂O
- Get moles of O (if any) by determining if C and H account for entire mass of butane
- Determine empirical formula of butane from ratio of moles C:H(:O) 17

Combustion Analysis Example

18

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(a) What is the empirical formula for butane?

Start

End

1.6114 g CO₂

? mol C

Start

0.8247 g H₂O

End ? mol H

The combustion of 0.5320 g butane (in a lighter) produces 0.4028 g of carbon dioxide and 0.8247 g of water.

(a) What is the empirical formula for butane?

Is there any O in butane?

Combustion Analysis Example

20

The combustion of 0.5320 g butane (in a lighter) produces 0.4028 g of carbon dioxide and 0.8247 g of water.

(a) What is the empirical formula for butane?

Ratio of Moles C : Moles H

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

Strategy:

- Start with empirical formula from part (a)
- Use mass and moles to calculate molar mass of butane
- Find out how many empirical units are in butane
- Molecular formula of butane is same factor × empirical formula

Combustion Analysis Example

21

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

Molar mass is measured in g/mol

Molar mass of butane =

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

Percent Yield

- "Yield" = what is produced
- "Percent" = (part/whole) × 100%
- Percent yield = comparison between

what was actually produced

and

the stoichiometric amount that could have been produced if the world was perfect

 $Percent yield = \frac{Actual amount produced}{Amount that could have been produced} \times 100\%$

Percent Yield Example

Reaction of 5.00 g of nitrogen gas with hydrogen produced 5.50 g of ammonia. What was the percent yield of the reaction?

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

Mass of ammonia possible in a perfect world (theoretical yield):

5.00 g N₂ ×
$$\frac{1 \text{ mol } N_2}{28.02 \text{ g } N_2}$$
 × $\frac{2 \text{ mol } NH_3}{1 \text{ mol } N_2}$ × $\frac{17.03 \text{ g } NH_3}{1 \text{ mol } NH_3}$ = 6.08 g NH₃

Mass of ammonia actually produced (actual yield): 5.50 g

% yield =
$$\frac{actual}{theoretical} \times 100\%$$

$$=\frac{5.50g}{6.08g}\times100\%=90.5\%$$

25

Exam 1: Most Common Difficulties Last Year

- Naming compounds
- Writing formulas of compounds
- Distinguishing extensive vs. intensive properties
- Explaining the differences between element, compound, mixture
- Doing metric conversions
- Calculating number of molecules
- Locating elements in Periodic Table
- Answering everything that is asked for in the problems

Naming Compounds

Keys to naming:

- Recognize what kind of compound (ionic, molecular, acid)
- Figure out the parts
- 1. Ionic compounds NaCH₃COO Ca(OH)₂ Mg(OCI)₂
 - Identify the ions
 - Name the ions
- 2. Molecular compounds P₂O₅
 - Identify the elements
 - Use prefixes
- 3. Acids
- HNO₃ HCIO₄
- Identify the negatively charged ion (anion)
- Morph the anion name into the acid name

28

27

Writing Formulas

Keys to writing formulas:

- Recognize what kind of name (ionic, molecular, acid)
- Figure out the parts
- 1. Ionic compounds
 - Determine the ions
 - Use charges to find the ratio of ions
- 2. Molecular compounds
 - Determine the elements
 - Change prefixes to subscripts
- 3. Acids
 - Morph the acid name into the anion name
 - Use charges to find the ratio of ions

Copper (II) phosphate

Hypochlorous acid

Dinitrogen monoxide

Chromium (III) carbonate

- Nitrous acid
- Diarsenic pentoxide

Metric Conversions and Sig Figs

- Metric conversions
 - Figure out what units converting from and to
 - Find equivalent measures (dominoes) and orient conversion factors properly so units cancel
- Significant figures
 - Addition rule
 - Multiplication rule
 - Order of operations (mathematically)

How many molecules of N_2 are in 10.0 grams of N_2 ?

Strategy:

- 1. What are you starting with? Grams
- 2. Where do you need to end? Molecules
- What kind(s) of conversions are necessary to get there?
 Grams → Moles (molar mass)
 Moles → Molecules (Avogadro's number)

$$10.0g \text{ N}_2 \times \frac{1 \text{ mol}}{28.02g} \times \frac{6.022 \times 10^{23} \text{ particles}}{1 \text{ mol}} = 2.15 \times 10^{23} \text{ molecules} \text{of } \text{N}_2$$

30