CHEM 103 Atoms

Lecture Notes January 31, 2006 Prof. Sevian

2

Agenda

- A few announcements
 - Discussion and lab both start this week
 - Links to online skill drills are in the Miscellaneous section in the course website
- More calculations skills you need
 - Scientific notation
- What are atoms? How do we know? Why should you care?
- How do atoms make compounds? What kinds of compounds exist? How do we name them?

Concerning lab exemptions

- Today is the deadline for requesting lab exemptions
- To request a lab exemption, you must EMAIL me a request so that your request is documented in writing (for your own protection)
- I will email you an answer to whether you have a lab exemption
- Until you receive an answer, you must attend lab, in case you do not receive a lab exemption

Some Measurements and Conversions You Need to Know

5

3

Two types of conversions

- Proportional
 - Time
 - Length or distance
 - Volume
 - Mass
- Equations
 - Temperature

Metric Prefix Meanings for Conversions

Prefix	Meaning	Example	
Centi (c)	1/100 th of	1 cm = 0.01 m 100 cm = 1 m	
Milli (m)	1/1000 th of	1 mL = 0.001 L 1000 mL = 1 L	
Kilo (k)	1000 of	1 kg = 1000 g	
Micro (μ)	10 ⁻⁶ of	1 μmol = 10 ⁻⁶ mol 1,000,000 μmol = 1 mol	
Nano (n)	10 ⁻⁹ of	1 nm = 10 ⁻⁹ m	

9

8

Volume Conversions

Important volume conversion to remember: $1 \text{ mL} = 1 \text{ cm}^3$

A can of soda is marked as having 258 cc of soda in it. How many liters is this? ^{3 sig figs}

Temperature Conversions Require Equations

Example: A gas has a temperature of 25.8 °C. What is the temperature in Kelvin?

Really Big Numbers

In a 22.4 liter sample of air at standard conditions, there are approximately this many particles present:

Really Small Numbers

13

12

A single snowflake has a mass of approximately

0.000 0030 kg

 $=3.0 \times 10^{-6} \text{kg}$

Calculations Using Scientific Notation

- A typical snowflake has 100=10² ice crystals
- A single ice crystal has 10¹⁸ water molecules
- A water molecule has a mass of 3.0 x 10⁻²⁶ kg
- Therefore, a typical snowflake has a mass of approximately

 $10^{2} crystals \times \frac{10^{18} water molecules}{1 crystal} \times \frac{3.0 \times 10^{-26} kg}{1 water molecule} = 3.0 \times 10^{-6} kg$

Data taken from http://hypertextbook.com/facts/2001/JudyMoy.shtml

15

14

Scientific Notation

- A nice way to represent big and small numbers
- Makes it easy to indicate significant figures
 9000 written with two sig figs is 9.0 x 10³
- Makes it easy to estimate answers
 (3.0 x 10⁸) x (2.0 x 10⁻⁶) = 6.0 x 10²
- Scientific notation and your calculator → try the practice problems in the Assignments section on the course website to make sure you are proficient at using scientific notation in your own calculator

What is an Atom?

17

- B.C.E. Democritus: an atom is the smallest particle of matter
- 1800's Electrons exist and they have some properties (negative charge, very small mass)
- Late 1800's-Mid 1900's Protons and neutrons exist and they have some properties (protons are +, neutrons are neutral, have nearly same mass which is > electron mass)

How is the atom organized? What is the nucleus?

What's in an Atom?

	Location	Charge	Mass
Proton	Nucleus	+	~1 a.m.u.
Neutron	Nucleus	0	~1 a.m.u.
Electron	Most of atom's space	-	$\frac{1}{1836^{th}}$ of an a.m.u.

24

The Actual Numbers

	Charge	Mass	
Proton	+1.602 × 10 ⁻¹⁹ C	1.007276 a.m.u.	
Neutron	0	1.008665 a.m.u.	
Electron	-1.602 × 10 ⁻¹⁹ C	0.00054858 a.m.u.	

Atomic mass units

1 a.m.u. = 1.661×10^{-24} grams

Important Implications

- 1. For an atom to be neutral, it must have equal quantities of protons (+) and electrons (-).
- Different quantities of neutrons do not affect the total charge of an atom. It (apparently) doesn't matter how many neutrons are in an atom.
- Most of the mass of an atom is in the nucleus (protons and neutrons). Can estimate an atom's mass by counting protons + neutrons.

Same	All have 6 electrons	All have 6 protons	All neutral	
Different	6 neutrons	7 neutrons	8 neutrons	
Symbol	$^{12}_{6}C$	¹³ ₆ C	$^{14}_{6}C$	

What Information does the Symbol Contain?

Where is each piece of information contained?

- How many protons?
- Why is the quantity of protons called the atomic number?
- How many neutrons?
- How many total particles in the nucleus? Why is this called the mass number?

Catching up on some vocabulary

How would you define these words now?

- Isotope
- Nucleus
- Neutral
- Mass number
- Atomic number

30

Think-Pair-Share

Fill in the missing information				
Symbol	Protons	Neutrons	Mass Number	Electrons (in neutral atom)
¹¹ ₅ B				
		20	37	

What does % mean in chemistry?

$$\% = \frac{\text{part}}{\text{whole}} \times 100$$

Example: How would you figure out what % of students in the room are between the ages of 20-29?

33

Isotopes and Natural Abundances

The mass of a typical sample of an element¹ is a weighted average of the masses of the isotopes

1A

H

Li

Na

K

Rb

Cs

Fr

Lanthanides and actinides Copyright © 2006 Pearson Prentice Hall, In

37

Terminology we will use all year

- Period = row across
- Group = column down
 - Several common groups
 - Group 1A: Alkali metals
 - Group 2A: Alkaline earth metals
 - Group 7A: Halogens
 - Group 8A: Noble gases
 - Groups B: Transition metals
- Early chemists (Mendeleev, Moseley) organized the Periodic Table according to properties of elements
- There are reasons why the Periodic Table is organized the way it is (stay tuned until chapters 6 and 7)

From Chemistry & Chemical Reactivity 5th edition by Kotz / Treichel. C 2003. Reprinted with permission of Brooks/Cole, a division 38 of Thomson Learning: www.thomsoni.ohts.com. Fax 800-730-2215.