Power Plant Pollution Controls

Green Chemistry Fall 2007

Presented by: Christopher Koutros
Power Plant Pollution Controls

1. Power plants and fuels
2. Emission control technologies
3. Are pollution controls green?
Fuels

- Coal is by far the most likely to produce pollution.
- Cleanest to least clean coal types:
 - Anthracite
 - Bituminous
 - Sub-bituminous
 - Lignite
- Natural gas can contain some sulfur, but otherwise is very clean. Only NO$_x$ controls must be used.
US Electricity Energy Flow

All numbers are in quadrillion (10^{15}) BTU (1 BTU ≈ 1.05 kJ)

Figure from EIA Annual Energy Review 2006
http://www.eia.doc.gov/emeu/aer/diagram5.html
Coal power plant designs

- Pulverized coal steam boiler
 - High-quality coal is crushed, then burned.
 - Traditional design
- Fluidized-bed
 - Burns at lower temps with limestone directly.
 - Minimizes SO\textsubscript{2} and NO\textsubscript{x} emissions
- Coal gasification
 - Coal is exposed to hot steam and low O\textsubscript{2} conditions.
 - Organic molecules decompose to form syngas.
 - Using gas turbines allows better efficiency.
- All data here is for electricity-generating power plants.
Figure 7-1 Schematic diagram of a typical pulverized coal steam boiler for the generation of electrical power. (Babcock and Wilcox, 1978)

http://www.tva.gov/power/coalart.htm

Heinsohn, R. J. *Sources and Control of Air Pollution.*
Major Pollutants

- **Nitrogen oxides (NO$_x$)** – from high heat oxidation of atmospheric nitrogen in combustor
- **Sulfur dioxide** – formed from oxidation of sulfur compounds in coal (pyrite and organic)
- **Mercury** – amount depends on the type of coal used
- **Particulates** – includes ash, carbon, and sulfur-containing aerosols
- **Carbon dioxide**
Pollution effects

- Acid rain
- Photochemical smog
- Respiratory disease
- Mercury poisoning
- US Clean Air Act passed 1963
NO$_x$ and Government Regulation

- Government regulations were the driving force behind development of NO$_x$ controls.
- Cost reductions are proportional to technology adoption.

Yeh, Rubin, Taylor, and Hounshell J. Air & Waste Manage. Assoc. 55:1827–1838
Ways to control pollution

- Fuel type and pretreatment
- Combustor alterations
 - Optimization of conditions and inputs in steady state
 - Re-feed inert flue gases into system to dilute oxygen
- Flue gas controls
- Effective measurement of pollution emission
Considerations when adopting control technologies

- Cost to build and maintain
- Energy usage
- Reagents needed to operate
- Byproducts - usable or dumped?
- Effectiveness
- Effect on multiple pollutants – some control technologies can control more than one pollutant.
Coal pretreatment

- Coal washing – grind coal into small pieces and use density to separate it from other minerals.

Combustor Alterations

- Optimization of conditions and inputs in steady state
- Re-feed inert flue gases into system to dilute oxygen
Flue Gas Control Technologies

- Catalytic reduction
- Scrubbers
- Particulate Controls
 - Fabric bag filters
 - Vortex and drop tray
 - Electrostatic precipitators
- Oxidizing/reducing agents
- Adsorbents
- Carbon sequestration
Acronyms

- FGD – flue gas desulfurization
- PCD – particulate control devices
- SCR – selective catalytic reduction
- ESP – electrostatic precipitators
- LNB – low NO\(_x\) burner
- CT – control technology
- CFB – circulating fluidized bed
NO_x
Sources of NO$_x$

- Thermal NO$_x$
 - Formed by high temperature oxidation of atmospheric nitrogen
 - Very sensitive to peak temperature (reciprocating engines)
 - 85% of total NO$_x$

- Prompt NO$_x$
 - Made in reactions of N$_2$ and flame-produced hydrocarbon radicals
 - Occurs in fuel-rich areas of combustor

- Fuel NO$_x$ – formed from nitrogen in the fuel
Combustor Modifications

1. Combustor geometry optimization

2. Flue gas recirculation
 - Dilutes fuel/air mix with flue gas (O_2 conc 3.3% is standard)

3. Low NO_x burners (LNB)
 - A type of staged combustion, using fuel-rich and fuel-lean zones to reduce peak temp.
 - These are the least expensive options
 - All work by reducing fuel burning temperature
Figure E7-5 Equilibrium concentrations (ppm) of NO₂ and NO versus temperature (K). Initial conditions % by volume:
SCR – Selective Catalytic Reduction

- The reaction of NO$_x$ and NH$_3$ (or urea) with a catalyst bed at high temperature.
 \[\text{NO}_x + \text{NH}_3 + \text{O}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O} \]

- Pros & Cons:
 - Eliminates 70-90% of NO$_x$
 - Expensive catalyst with high replacement cost
 - Stoichiometric ammonia or urea is required
 - High sulfur content in flue gases can poison catalyst
 - Can be done non-catalytically (SNCR)
Figure 10-27 Schematic diagram of staged thermal reduction of NO\textsubscript{x} for an electric utility boiler showing nonselective catalytic ammonia injection (NSCR) and in-duct and air-heater applications of selective catalytic reduction (SCR) (with the permission of Wahlco).

SCR Catalysts

- Noble metal catalysts (Pt/Al₂O₃) at low temp
 - Easily poisoned and corroded by sulfur compounds (used in natural gas plants only)
 - Lower Temp
- Base metal catalysts (V₂O₅/TiO₂/other metals)
 - Poisoned by particulates, acids, some metal oxides
 - Toxic: special disposal required
- Zeolites (zeolite/Cu/Fe)
 - High Temp, more NH₃ required
SCR capacity

![Graph showing cumulative GWe from 1980 to 2002 for different regions: World, US, Japan, Germany, and Others. The graph indicates an increase in SCR capacity over time, with a significant rise in the late 1990s.]
Reduction of NO$_x$

<table>
<thead>
<tr>
<th>Technology</th>
<th>Yeh, Rubin, Taylor, and Hounshell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustor alterations</td>
<td>30-60%</td>
</tr>
<tr>
<td>SNCR</td>
<td>30-50%</td>
</tr>
<tr>
<td>SCR</td>
<td>70-90%</td>
</tr>
</tbody>
</table>
SO_2
SO$_2$ Flue Gas Scrubbing

- **Dry scrubbing**
 - Ca(OH)$_2$ slurry droplets or solid NaCO$_3$ particles are injected in flue gas stream
 - CaSO$_4$ or Na$_2$SO$_4$ particles are captured by fabric filters with fly ash

- **Wet scrubbing**
 - Limestone slurry reacts to form CaSO$_3$, then CaSO$_4$
 - Corrosive low pH and scaling are produced
 - Large amounts of waste sludge are produced.
Figure 10-29 Schematic diagram of the GE Dry Flue Gas Desulfurization System using lime to remove SO$_2$. The lime reagent enters the system as a slurry. Hot flue gas evaporates water from the slurry and SO$_2$ is adsorbed on the remaining particles of dry reagent. Flyash and the dry reagent are collected by a fabric filter. Additional SO$_2$ is adsorbed as the flue gas passes through the dust cake containing the dry reagent particles. (Figure used by permission of General Electric Environmental Services, Inc.)
Limestone Slurry Forming

- Limestone (CaCO\(_3\)) is converted to form more reactive and soluble calcium hydroxide.
 \[\text{CaCO}_3 + \text{heat} \rightarrow \text{CaO} + \text{CO}_2 \]
 \[\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \]

- Calcium hydroxide or limestone reacts with sulfur dioxide.
 \[\text{CaCO}_3 + \text{SO}_2 + 2 \text{H}_2\text{O} \rightarrow \text{CaSO}_3 \cdot 2\text{H}_2\text{O} + \text{CO}_2 \] or
 \[\text{CaO} + \text{SO}_2 + 2 \text{H}_2\text{O} \rightarrow \text{CaSO}_3 \cdot 2\text{H}_2\text{O} \]

- CaSO\(_3\) converts to sulfate in acidic environments with oxygen.
Fluidized Bed Combustors

- Solid coal pieces are uplifted by gas coming from the bottom and burned in.
- Limestone (CaCO$_3$) or dolomite (MgCO$_3$) is added to the dry fuel, which captures sulfur before it leaves the combustor (up to 90%). Na, K, CaCl$_2$ added to increase adsorption.
Heinsohn, R. J. *Sources and Control of Air Pollution.*
Advantages of FBT

- Uniform, lower temperature throughout the bed
- Complete mixing of fuel and limestone provides good SO$_2$ reduction
- Large interface between gas and solid
- Lower temperatures means much less NO$_x$
- Lower-quality coal and other fuels can be burned.
Catalytic Oxidation of SO$_2$ on Zeolites

- SO$_2$ weakly adsorbs to powdered zeolite in the presence of water vapor. Will release upon heating.

- The SO$_2$ can be oxidized to sulfate by H$_2$O$_2$, making H$_2$SO$_4$.

- Disadvantage: adsorbed CO$_2$ must be washed off with HCl, then D.I. water.

- Adsorption range: 35-72 mg SO$_2$/g zeolite from 290 to 350 K
Experimental Setup
SO₂ Removal

- 90% to 98% using wet scrubbers
- Up to 80% using dry scrubbers
- Limited to SO₂ at 2000 ppm

<table>
<thead>
<tr>
<th>Scrubber Type</th>
<th>Unit Size (MW)</th>
<th>Capital Cost ($/kW)</th>
<th>O&M Cost ($/kW)</th>
<th>Annual Cost ($/kW)</th>
<th>Cost per Ton of Pollutant Removed ($/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>> 400</td>
<td>100 - 250</td>
<td>2 - 8</td>
<td>20 - 50</td>
<td>200 - 500</td>
</tr>
<tr>
<td></td>
<td>< 400</td>
<td>250 - 1,500</td>
<td>8 - 20</td>
<td>50 - 200</td>
<td>500 - 5,000</td>
</tr>
<tr>
<td>Spray Dry</td>
<td>> 200</td>
<td>40 - 150</td>
<td>4 - 10</td>
<td>20 -50</td>
<td>150 - 300</td>
</tr>
<tr>
<td></td>
<td>< 200</td>
<td>150 - 1,500</td>
<td>10 - 300</td>
<td>50 - 500</td>
<td>500 - 4,000</td>
</tr>
</tbody>
</table>

*a (EIA, 2002; EPA, 2000; Srivastava, 2001)

*b Assumes capacity factor > 80%
Advantages/Disadvantages

- Very high pollutant removal rate
- Easily obtained reagents
- Can be built without major retrofit
- High capital and running costs
- Messy
- High disposal costs
Hg
Mercury: The Next Big Step

- US EPA estimate: 45 t Hg emissions/year from coal electric plants.
- Average of 0.1 mg Hg/ton coal
- 60% of all Hg in coal is released to atmosphere
- Other pollution control devices can also capture mercury.
- Different installed control techs and conditions mean each plant must develop its own plan.

J. Air & Waste Manage. Assoc. 53:1318-1325
Current Hg Testing

- In coal: oxygen bomb/AA spectroscopy
 - ASTM D-3684 (up to 30% SD)
- In stack gases (direct measurement):
 - EPA 29, EPA 101A, Ontario Hydro Method, MESA
- Measurements are limited, difficult, long, and expensive.
- Continuous emissions monitoring (CEM):
 - Still in development, need validation, problems with interfering species.
EPA Method 7473

- Thermal decomposition, amagalmation, and AA spectroscopic analysis
- Normally used for water/soil.
- All solid byproducts of fuel burning and pollution controls can be measured.
- Use partial mass balance to calculate Hg emitted.
- 5 min/sample
- No sample prep.

Direct Mercury Analyzer
Milestone, Inc.
Validation of EPA 7473 with Coal

Low NO_x Burner

----- vs. -----
Conventional Burner

Boylan, H.; R. Cain; H. M. Kingston.
J. Air & Waste Manage. Assoc.
53:1318-1325
Hg Emission by Control Device

<table>
<thead>
<tr>
<th></th>
<th>Hg captured by sink</th>
<th>Hg emitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD</td>
<td>68% on FGD material</td>
<td>11% (11 kg/year)</td>
</tr>
<tr>
<td>Low NO\textsubscript{x} burner and ESP</td>
<td>43% on fly ash</td>
<td>57% (51 kg/year)</td>
</tr>
<tr>
<td>ESP only</td>
<td>1% on fly ash</td>
<td>99% (88 kg/year)</td>
</tr>
</tbody>
</table>
Mercury

- Chlorine present in coal will oxidize the mercury to Hg\(^{2+}\)
- Oxidized mercury can be removed more easily by scrubbers than elemental mercury
- Hg\(^{2+}\) is much more soluble in water than Hg\(^{0}\)
Analysis of Power Plant Hg Capture

<table>
<thead>
<tr>
<th></th>
<th>CNS-P1</th>
<th>CNS-P2</th>
<th>CNS-P3</th>
<th>CNS-P5</th>
<th>CNS-P6</th>
<th>OH-LNB</th>
<th>EERC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl, daf wt %</td>
<td>0.128</td>
<td>0.174</td>
<td>0.135</td>
<td>0.156</td>
<td>0.151</td>
<td>0.091</td>
<td>0.0419</td>
</tr>
<tr>
<td>Hg, ppm</td>
<td>0.139</td>
<td>0.098</td>
<td>0.110</td>
<td>0.089</td>
<td>0.220</td>
<td>0.149</td>
<td>0.157</td>
</tr>
<tr>
<td>Boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating, MW</td>
<td>290</td>
<td>193</td>
<td>180</td>
<td>–</td>
<td>1355</td>
<td>1338</td>
<td>1310</td>
</tr>
<tr>
<td>O₂, %</td>
<td>6.5</td>
<td>7.5</td>
<td>4.9</td>
<td>4.9</td>
<td>6.0</td>
<td>4.0</td>
<td>4.1</td>
</tr>
<tr>
<td>FGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>MgLime</td>
<td>LS-F0</td>
<td>LS-N0</td>
<td>LS-N0</td>
<td>MgLime</td>
<td>MgLime</td>
<td>LS</td>
</tr>
<tr>
<td>ηSO₂, %</td>
<td>97</td>
<td>82</td>
<td>87</td>
<td>82</td>
<td>96</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Slurry pH</td>
<td>6.5</td>
<td>6.1</td>
<td>5.8</td>
<td>5.8</td>
<td>6.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>L:G, gpm/acfm</td>
<td>60–75</td>
<td>94</td>
<td>73</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>–</td>
</tr>
<tr>
<td>IN[Hg, µg/dscm</td>
<td>8.2</td>
<td>6.5</td>
<td>10.6</td>
<td>6.8</td>
<td>17.9</td>
<td>9.1</td>
<td>8.2</td>
</tr>
<tr>
<td>IN[Hg₂⁺</td>
<td>0.736</td>
<td>0.797</td>
<td>0.874</td>
<td>0.703</td>
<td>0.707</td>
<td>0.872</td>
<td>0.572</td>
</tr>
<tr>
<td>OUT[Hg, µg/dscm</td>
<td>3.2</td>
<td>2.1</td>
<td>1.9</td>
<td>2.7</td>
<td>7.42</td>
<td>3.5</td>
<td>5.1</td>
</tr>
<tr>
<td>OUT[Hg₂⁺</td>
<td>0.159</td>
<td>0.124</td>
<td>0.150</td>
<td>0.382</td>
<td>0.162</td>
<td>0.370</td>
<td>0.198</td>
</tr>
<tr>
<td>ηHgCl₂, %</td>
<td>91.6</td>
<td>95.0</td>
<td>96.9</td>
<td>78.4</td>
<td>90.5</td>
<td>83.7</td>
<td>78.5</td>
</tr>
<tr>
<td>fSCRB, %</td>
<td>56.2</td>
<td>67.9</td>
<td>82.4</td>
<td>59.8</td>
<td>61.8</td>
<td>58.5</td>
<td>38.0</td>
</tr>
</tbody>
</table>

Recommendations

- Using pre-scrubbers to eliminate HCl is a bad idea. Less Hg is captured.
- HCl and O₂ levels along with FGD temp are most important in capturing Hg. No other factors correlate.
- Selective catalytic reduction (SCR) in combination with wet scrubber will eliminate most Hg, but more research must be done to make sure it is predictable. (Turkey)

Power Plant Pollution Controls

1. Power plants and fuels
2. Emission control technologies
3. Are pollution controls green?
Byproducts

- **Slag** – contains metal oxides, phosphorous, and ash. It can be used in concretes and fertilizers.

- **CFB ash** – good for blending with construction materials (gypsum). Very basic, so OK for landfills.

- **Slurry** – difficult to move and store before drying. Contains calcium sulfate.
Green?

■ Do pollution controls make fossil fuel-fired power plants green?
 ■ Pollution controls require large amounts of energy and reagents to run.
 ■ Combustor controls are better than flue gas controls.
 ■ Catalysts and easily recycled/cleaned asorbents should be preferred.