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Abstract

The proton diffusion coefficients in an electrolytic manganese dioxide (EMD) electrode at various stages of the constant current discharge
have been determined by means of AC impedance technique. The finite diffusion model was applied in the numerical fitting. The crystallite
size of EMD was estimated from (1 1 0), (1 2 1) and (0 2 1) diffraction peaks with both Scherrer equation and Warren–Averbach theory. X-ray
diffraction (XRD) peak broadening caused by instrument, crystallite size and microstrain was separated. The crystallite size of ramsdellite
was assumed to be the proton diffusion length.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

MnO2 has been used as cathode material in many battery
systems for decades, for example, electrolytic manganese
dioxide (EMD) in primary/secondary alkaline batteries and
spinel Lithium manganese dioxide in rechargeable Li-ion
cells. MnO2 has also been proved as one of the most inex-
pensive, abundant and non-toxic cathodic battery reactants
with very good performance. The mechanism of the MnO2
discharge in alkaline KOH solution has been extensively
studied for some decades. Among such mechanisms, the
scheme of Kozawa and co-workers[1–4] seems to be widely
adopted, in which a two-step mechanism was postulated for
�-MnO2 to Mn(OH)2. Conversion of MnO2 to MnO1.5 is
the first step, in which the crystal structure of�-MnO2 is
preserved. After H2O molecules become decomposed on the
surface of MnO2, protons diffuse within MnO2 through the
tunnels inside the structure. The step is homogeneous, thus
a slope discharge curve is demonstrated. The second step
involves further reduction of MnO1.5 to Mn(OH)2, since
most of the vacancies inside the lattice of MnO2 are occu-
pied by protons, the second step of the reduction is a het-
erogeneous surface reaction involving soluble intermediate
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Mn(III) species. The “so-called”�-structure of the material
starts to collapse at the beginning of the second reduction
step. Practically, EMD is hardly discharged beyond the first
electron in alkaline cells, thus it is critical to understand the
behavior of the proton diffusion process inside the lattice of
MnO2, the process was suggested as a slow and rate deter-
mine step during the reduction of MnO2 [6].

The proton diffusion within MnO2 has been studies by
means of various electrochemical techniques, since being ad-
vanced by Coleman[7]. Scott[8] proposed a simple model
for the measurement of proton diffusion coefficient (DH) in-
side MnO2 based on the semi-infinite diffusion model. In
1962, Kornfeil [9], also based on the semi-infinite diffu-
sion model, calculated the proton diffusion coefficient by
means of fitting the potential recovery curves of the MnO2
electrode. Atlung and Jacobsen[5] investigated the proton
diffusion process of EMD in potassium chloride/potassium
hydroxide electrolyte by AC impedance technique. Chabre
and Pannetier[6] measured the proton diffusion coefficient
of EMD at various stages of the discharge by SPEC.

Almost all the published works on the studies of the proton
diffusion inside the lattice of MnO2 have been based on the
assumption of the semi-infinite diffusion. In order to estimate
the proton diffusion coefficient using the semi-infinite dif-
fusion model, the electrochemically accessible surface area
and the molar volume of MnO2 at various stages of the dis-
charge need to be determined. The difficulties of estimating
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the accessible surface area and the MnO2 molar volume im-
peded the measurement of the proton diffusion coefficients
of the partially discharged MnO2. Either s

√
D [10] or BET

surface area were used to estimate the proton diffusion co-
efficient. In my recent publication[11], the proton diffu-
sion coefficient was measured by taking into consideration
of the true electrochemically accessible surface area at var-
ious stages of the discharge of EMD electrode by means of
AC impedance technique and the fitting based on the trans-
mission line model. The electrochemically accessible sur-
face area was determined by the change of the double-layer
capacitance of the porous EMD electrode. A unique elec-
trochemical test cells was designed to record the electrode
expansion in situ during the discharge of the electrode, thus
the change of the molar volume can be estimated from the
change of the electrode volume.

Even though, the semi-infinite diffusion model was used
for the fitting of the AC impedance results, Qu[11] noted that
interpreting the results by the semi-infinite diffusion model
for the proton diffusion inside the lattice of MnO2 was ques-
tionable, since the condition for the semi-infinite diffusion
model may not be met. EMD is well known as a highly dis-
ordered material with De Wolff (intergrowth of ramsdellite
and pyrolusite) and microtwinning disorders. The crystallite
size of commercially available EMDs are in the range from
20 to 200 Å, depending on how it is calculated. The proton
diffusion at the practically useful potential (>0.45 V versus
Hg/HgO) was believed only involving the [1× 2] channels
in the ramsdellite domains of the solid-state solution. Ei-
ther De Wolff disorders or microtwinning, or other kinds of
strains can interrupt the homogeneity of the ramsdellite unit
and thus put obstacles along the proton diffusion pathway
in the [1× 2] channel. So a proton may travel across the
whole distance of the diffusion length, especially at the late
stage of the discharge, thus, the finite diffusion model may
be more appropriate for the investigation of the proton diffu-
sion inside the lattice of MnO2 structure. To the best of my
knowledge, it is the first report of combining AC impedance,
transmission line model and finite diffusion model for the
study of the proton diffusion inside EMD structure.

2. Experimental

2.1. Material

EMD was obtained from Kerr-McGee Corporation. KS6
synthetic graphite was from Lonza (now Timcal). Teflon
suspension (T-30) used was from Dupont.

2.2. Electrolyte, and reference—and counter electrodes

An amount of 30 wt.% aqueous potassium hydroxide so-
lution was used as the electrolyte in all experiments at 298±
1 K. All potentials reported were referred to Hg/HgO refer-
ence electrode immersed in KOH of the same concentration

as the experimental electrolyte. A Ni mesh counter elec-
trolyte was used.

2.3. Construction of EMD electrode and electrochemical
cell

The detailed descriptions for the electrode construction
and the electrochemical cell were reported previously[11].
The MnO2 electrode was made with EMD and KS6 graphite
at 9:1 weight ratio, 0.5 wt.% Teflon (dry material) was used
as binder. Two grams of the mix was pressed to form a
tablet with 22.0 ± 0.2 mm in diameter and 1.8 ± 0.2 mm
in thickness. Two-compartment cell was used. The EMD
working electrode and the counter electrode were housed
in the separate cell compartments, which were linked by
an electrolyte bridge. Spring pressure was applied to make
sure good contact between the working electrode tablet and
the Ni current collector. Hg/HgO reference electrode was
connected to the working electrode compartment by Luggin
capillary.

2.4. Experimental techniques and instrumental details

The AC impedance measurements were conducted by
means of a Solartron Electrochemical Interface 1278 and
Solartron Frequency Response Analysizer 1285 controlled
by ZPLOT and CORRWARE software. ZVIEW was used
for the fitting of the AC impedance data. The X-ray powder
diffraction pattern of the EMD was collected using Simens
D5000 powder diffractometer equipped with a Cu target
X-ray tube and monochrometer. WIN-Crysize software from
Simens (Now Brauker AXS) was used for the calculation of
the crystallite size based on Warren–Averbach theory.

The EMD electrode was discharged under 30.8 mA g−1

(C/10 rate). The discharge was stopped at various stages of
the depth of discharge (DOD). The electrode was put on
rest until the potential variation between the cathode and
the Hg/HgO reference electrode became less than±5 mV/h.
The AC impedance measurements were then carried out at
OCV and±10 mV potential amplitude.

3. Results and discussion

3.1. Theory and equivalent circuits

A porous MnO2 electrode is constructed with MnO2 and
graphite particles of various size distributions. Packing of
those particles results of pores with different sizes through-
out the porous electrode. Pores with different size distribu-
tions have different time constants, and the ionic diffusion
rate inside the pores of different sizes varies. In parallel to the
proton diffusion throughout the lattice of MnO2, the ionic
diffusion is inside the matrix of the porous MnO2 electrode.
The complication of the ionic diffusion inside the porous
electrode results from the fact that the ionic diffusion rate
varies in the pores of different sizes. So the surface area of
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Fig. 1. (A and B) Transmission line equivalent circuit model used in the AC
impedance fitting.Rs andR�: Ohmic resistances;Rct: Faraday resistance;
C: distributed double layer capacitance;R: distributed resistance;Rw

Warburg resistance; CPE: constant phase element.

the porous electrode, which can be accessed electrochem-
ically, depends on the density of the discharge current. A
good example to demonstrate the impact of porosity is the
approximately inverse correlation between BET surface area
of EMD and their discharge capacity in alkaline electrolyte
[12]. Also, problems of different kind arise due to finite re-
sistance of the particles and the supporting electrolyte, and
to inter-particle contact resistance. The detailed discussion
regarding the ionic diffusion in the matrix of a porous elec-
trode can be found in the early publications[11,13,14].

A transmission line equivalent circuit was developed by
De Levie [14] to represent the porous electrode involving
Faraday charge transfer. The equivalent circuit was modi-
fied and applied to the study of porous MnO2 electrode[11].
Fig. 1 shows the transmission line equivalent circuit. The
detailed descriptions for the model can be found in the ref-
erence[11]. Rct andRw represent the charge transfer resis-
tance and Warburg impedance for the reduction of MnO2,
respectively.Cdl is the double layer capacitance. The energy
dissipation in the porous electrode can be represented by the
distributed double layer capacitance and resistance in the
RC transmission line. The mathematical equation of the RC
transmission line has the same form as the diffusion equa-
tion. So the transmission line equivalent circuit inFig. 1A
can be simplified as inFig. 1B. CPE is a constant phase el-
ement (CPE) and its impedance can be represented as[17].

Z = σ′ω
[
cos

(
1

2
mπ

)
− i sin

(
1

2
mπ

)]
(1)

where σ is termed as the CPE factor and m is the CPE
exponent.

A Warburg impedance represents the diffusion of charge
carriers through a medium. The frequency of the modula-
tion signal, alternatively the discharge current density, de-
termines the depth of the charge carriers can travel. Lower
frequency or lower discharge current density corresponds to
the diffusion deeper into the material; higher frequency or
higher discharge current density corresponds to the diffusion
less deep into the material. If the medium is not thick enough,
the charge carriers will penetrate the entire thickness dur-
ing the low frequency modulation or the low current density
discharge, thus finite Warburg impedance has to be used.
On the other hand, if the thickness of the medium is large
enough, the charge carriers cannot travel the entire length
of the diffusion path even at the low modulation frequency
or the low discharge current density (ω 	 D/δ2, whereω
is the modulation frequency,D is the diffusion coefficient
of the charge carriers andδ is the diffusion length), then
the impedance would be semi-infinite Warburg impedance.
In the porous MnO2 electrode, the interface of EMD par-
ticles is between their solid surface with the electrolyte in
the pores, since the pore size is similar with or even smaller
than the particle size of EMD, so even the average particle
size of MnO2 is less than 50�m, for each individual EMD
particles, they can be treated as a flat electrode instead of a
spherical electrode. With the assumption that the proton dif-
fusion inside MnO2 is the rate determine step, Fick’s second
law can be written as

∂C(l, t)

∂t
= D

∂2C(l, t)

∂2l
(2)

The initial condition is

C(l, t)t=0 = C0 (3)

whereC0 is the initial proton concentration, it should be the
initial proton concentration in the [1× 2] channel or in the
ramsedellite domain of EMD.

The first boundary condition is(
∂C(l, t)

∂l

)
l=0

= 0 (4)

For the AC impedance measurement, another boundary con-
dition is(
∂C(l, t)

∂l

)
l=d

= im sinωt

nsFD

whereim is the response current to the modulation potential
andω is the frequency of the AC signal.

In the case of the semi-infinite diffusion model,ω 	
D/δ2, the Warburg impedance can be obtained by solving
the diffusionEq. (2)and expressed as[15]

Zω = σ(1 − i)ω−1/2 (6)

where

σ = Vm

nFA(2D)1/2
∂Vocv

∂x
(7)
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Then

D = 1

2

[
Vm

nFAσ

∂Vocv

∂x

]2

(8)

∂Vocv/∂x is the slope of the open circuit voltage (Vocv) versus
the mole fraction of MnO2 andVm is the molar volume of
MnO2. A is the electrochemically accessible surface area.
All the parameters can be obtained experimentally[11].

In the case of the finite diffusion assumption,ω 
 D/δ2,
the complex graph (Nyquist plot) is a vertical line perpen-
dicular to the real axis, and

D = δ2

3RlCl
(9)

where

Cl = d(−Im)

d(ω−1)
(10)

Im is the imaginary impedance.Rl andCl can be obtained
from the Nyquist plot[16]. The true finite diffusion model
obviously does not suit the case of the proton diffusion inside
the lattice of EMD.

In the transition region between the semi-infinite and the
true finite diffusion control, whereω ≈ D/δ2, the Nernst
diffusion layer thickness,δ was comparable to the distance
traveled by the diffusion species in the low frequency oscil-
lating perturbations, then the impedance is given[17] as

Zω = (1 − i)σω−1/2 tanh

[
δ

(
iω

D

)1/2
]

(11)

When

K =
√

2δ2

D
(12)

Fig. 2. Discharge curve for the constant current (30 mA g−1) discharge of EMD electrode. Arrows indicate the DOD where AC impedance measurements
were taken.

Then

Z′
ω (real) = σ√

ω

(sinhK
√
ω + sinK

√
ω)

(coshK
√
ω + cosK

√
ω)

(13)

Z′′
ω (imaginary) = σ√

ω

(sinhK
√
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√
ω)

(coshK
√
ω + cosK

√
ω)

(14)

Both σ andK can be obtained by means of the least square
fitting of the AC impedance results.

3.2. Fitting the AC impedance results based on the finite
diffusion model

The AC impedance measurements for the EMD elec-
trode were taken at various depths of the constant current
discharge.Fig. 2 shows the discharge curve at 30.8 mA g−1

(C/10). The arrows indicate the time, at which the AC
impedance measurements were taken.Fig. 3A and Bshows
the complex plane plots for the EMD electrode before dis-
charge and at 50% DOD. The fitting results based on both
the semi-infinite and the finite diffusion models are plotted
with the experimental results for the comparison. It is ob-
vious that the finite diffusion model fitted the experimental
data better, especially in the low frequency range and for
the partially discharged electrode. The fitting results for
the non-discharged and the 50% DOD discharged EMD
electrode based on the finite diffusion model are listed in
Table 1. In order to obtain the diffusion coefficient from
the finite diffusion model (Eq. (12)), the length of proton
diffusion path (δ) has to be estimated.

3.3. Proton diffusion path and the estimation for its length

EMD is well known as a highly disordered material.
In general, MnO2 displays one of far the most complex
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Fig. 3. AC impedance response for a non-discharged (A) and 50%
DOD discharged EMD electrode (B). Numerical fitting were based on
semi-infinite model (solid line) and finite model (dashed line).

series structure among the hcpVI MXe compounds. The
structure of MnO2 of all kinds can be described as a dis-
tribution of cations Mn4+ in the interstices of a more or
less close-packed network of oxygen atoms. The complex-
ity of the MnO2 structure results from the fact that sev-
eral cation ordering schemes are possible. After studying
the X-ray diffraction (XRD) patterns of the�-MnO2 sam-
ples, De Wolff [18] suggested that the crystal structure of

Table 1
Fitting results for non-discharged and 50% DOD discharged EMD based
on equivalent circuit inFig. 1

Parameters Non-discharged 50% DOD

Ohmic resistance,Rs (�) 0.448 0.476
Charge transfer resistance,Rct (�) 0.508 0.447
CPE factor,σ′ 14.7 36.7
CPE exponent,m 0.46 0.57
K′ (

√
δ2/D) (s) 19.2 26.9

�-MnO2 could be described as random intergrowth of py-
rolusite layers in a ramsdellite matrix. Ramsdellite domains
are closely related to pyrolusite structure, except that the
single chains of edge-sharing octahedral are now replaced
by double chains. The defect created by the intergrowth of
pyrolusite chains does not affect the unit cell dimensions
along a- and c-directions, but shorten theb dimension of
ramsdellite unit cell. As the consequence of the introduction
of pyrolusite domains into ramsdellite matrix, two kinds of
tunnels co-exist in the�-MnO2 structure. They are [1× 1]
tunnels in the pyrolusite domains and [1× 2] tunnels in the
ramsdellite domains. De Wolf disorder model has been fur-
ther proved and well adopted as the fundamental structure
of �-MnO2. Despite all the success of De Wolff model, not
all the features of X-ray diffraction of�-MnO2 can be ac-
count for by just using De Wolff disorder, for example, the
frequent coalescence of lines h21 and h40, which are not
modified by the layer disorder. Chabre and Pannetier[6]
introduced another kind of defect identified as microtwin-
ning, which occurs on the (0 2 1) and (0 6 1) growth planes
of EMD. Microtwinning in ramsdellite has no effect on the
anionic lattice, but results of a change in the Mn4+ distri-
bution in the octahedral sites constructed by oxygen atoms.
The immediate octahedral coordinated environment of man-
ganese atoms is not changed.

In the light of the structural studies for�-MnO2, it has
been long believed that within the range of the practically
useful potential for the reduction of EMD, protons interca-
late and diffuse mainly along [1×2] tunnels in the ramsdel-
lite domains. The assumption was supported with the first
principle calculation done by Cedar and co-workers[19]. In
the lattice of�-MnO2, protons hop between localized oxy-
gen sites and reside for most of the time at minimum energy
sites, but eventually jump from on site to another overcom-
ing the intersite energy barrier by a thermally activated pro-
cess. The protons will travel along the path with minimum
energy barrier. Cedar and co-workers estimated that the ac-
tivation energy barrier for the proton diffusion in the pyro-
lusite domains along the [1×1] tunnel was 575 meV versus
200–400 meV for the proton diffusion in ramsdellite along
the [1× 2] tunnel.

The proton has 140 meV higher energy near the planar
oxygen site than that near the pyramidal site; thus, protons
diffuse along the [1× 2] tunnel by hopping between the
pyramidal oxygen ions on the opposite sides, the activa-
tion energy for each hopping was estimated 200 meV[19].
Therefore, the length for the proton diffusion should be the
ramsdellite crystallite size.Fig. 4 shows the X-ray diffrac-
tion of the Kerr-McGee EMD. Typical five broad peaks of
EMD were fitted by the least squares refinement method
according to Lorentzian distribution. Each peak was in-
dexed accordingly. The detailed index and positions of the
peaks are listed inTable 2. The peaks, which are not af-
fected by De Wolff disorder, are listed initalics in the table.
The structure of ramsdellite is believed to be orthorhombic.
Table 3tabulates the parameters for the orthorhombic unit
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Fig. 4. XRD profile of the EMD. Lorentizian profile refinement results are plotted with experimental results. Peaks from the refinement are indexed.

cell calculated using only the peaks without being affected
by De Wolff disorder.

It is the common practice among EMD and alkaline bat-
tery manufactures to calculate the crystallite size of EMD
from (1 1 0) peak by means of Scherrer equation[20]:

Table 2
Line positions of the EMD XRD patterns shown inFig. 4

(h k l) 2θ

Observed Calculated

1 1 0 22.162 22.039
1 3 0 34.707 34.706
0 2 1 37.241 36.567
1 1 1 (0 4 0) 38.344 38.508
2 0 0 40.619 40.523
1 2 1 41.475 41.995
1 4 0 42.684 43.085
1 3 1 48.839 47.338
2 2 1 56.420 55.420
2 4 0 57.272 56.603
1 5 1 62.736 62.098
0 0 2 67.456 65.017

Peaks which are not affected by De Wolff disorder are listed initalics.

crystalsize= Kλ

(FWHM2 − S2) cos(θ)
(15)

whereλ is the wavelength of the X-ray being used, FWHM
stands for full width at half maximum,S is the instrumen-
tal line broadening andθ is the center position of the peak.
In the case of EMD, the (1 1 0) X-ray diffraction peak is so
wide that the instrumental broadening (S) can be ignored.
The crystallite size calculated from the (1 1 0) peak through
Scherrer equation is listed inTable 4. Even though Scherrer
equation is well adopted to estimate the “effective” crystal-
lite size of EMD, the results are questionable. As discussed
previously, EMD is a highly defective material with various
kinds of defects. There are three factors, which can broaden
a diffraction peak and affect peak profile shape: crystallite

Table 3
The orthorhombic unit cell parameters for the EMD

Parameters Angstrom (Å)

a 4.4487
b 9.5156
c 2.8666
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Table 4
Crystallite size estimated from (1 1 0), (1 2 1) and (0 2 1) diffraction peak
by two different theories

(1 1 0) (1 2 1) (0 2 1)

Scherrer equation (Å) 22.1 110 95.8
Warren–Averbach (nm) – 12.5 11.7

size, microstrain, which results from the internal stress, and
could be associated with localized defects and instrument.
Referring toTable 2, both De Wolff and microtwinning de-
fects contribute to the (1 1 0) diffraction line broadening. So
without taking into account microstrain, it may result of sig-
nificant lower crystallite size by using Scherrer equation on
(1 1 0) diffraction peak.

Another method is proposed in this paper to estimate the
crystallite size of EMD based on Warren–Averbach theory
[21] by taking into consideration both microstrain and in-
strumental contributions. The instrumental broadening can
be corrected by using lanthanum hexaboride (LaB6) single
crystal (Standard Reference Material 660a from National In-
stitute of Standard and Technology), this standard reference
material (SRM) is made for use as a standard for calibra-
tion of diffraction line positions and line shapes determined
through powder diffractometry. In order to estimate the crys-
tallite size of ramsdellite, the diffraction peaks which were
not affected by De Wolff disorder (those initalics in Table 2)
were chosen for the calculation. Evidentially, (0 2 1) and
(1 2 1) peaks are sharper than (1 1 0) peak. Besides instru-
mental broadening, peak broadening due to microstrain has
to be corrected too, in order to obtain the crystallite size.
Warren–Averbach theory involves the analysis of the peak
profile shape, from which contribution due to crystallite size
and microstrain are separated; Microstrain in materials in-
creases the line width as a function of 2θ. The width from
crystallite size and lattice distortion can be deconvoluted by
Fourier transforming the peak profiles of the standard and
unknown and plotting the Fourier coefficients as function
of the (h k l) values of the measured reflections, a crystal-
lite size distribution and a microstrain distribution are ob-
tained, which yield an average crystallite size and root mean
squared microstrain. Full utilization of Warren–Averbach
theory involves the measurement of the complete profile of
multiple orders of the same reflection, e.g. (1 1 0), (2 0 0),
(3 0 0). Since it leaks the same reflection peaks in the XRD
of EMD, additional assumptions were made, in which the
crystallite size broadening has Lorentzian (Cauchy) profile
and the microstrain broadening has a Gaussian profile. The
detailed mathematics can be found in Warren’s book[21].
Eqs. (16)–(19)summarize the method. The distribution of
diffracted powderP ′

2θ per unit length on a Dubye–Scherrer
cone can be expressed as a Fourier series:

P ′
2θ = K(θ)N

∞∑
1

(An cos(2pnh3) + Bn sin(2pnh3)) (16)

The sin term inEq. (16)can be ignored, since only such ef-
fects that broaden a peak profile symmetrically are assumed
to be present:

An = Asize
n Astrain

n (17)

Assuming Lorentizian profile for size broadening and Gaus-
sian curve for microstrain broadening,

An = F(Lorentizian)F(Gaussian) (18)

whereF stands for Fourier transform. Then

lnAn = In(e−x1ne−x2n
2
) = −X1n − X2n

2 (19)

The coefficientsX1 andX2 of the second-degree polynomial
contain the information on crystallite size and microstrain.

Applying Warren–Averbach theory to the (1 2 1) and
(0 2 1) diffraction peaks, the crystallite size for EMD can
be calculated. The results are listed inTable 4 together
with the crystallite size calculated based on Scherrer equa-
tion which, indeed resulted smaller crystallite size in all
cases.

3.4. Proton diffusion coefficient in EMD

With the information of the crystallite size for the rams-
dellite domain, which has been believed as the proton diffu-
sion length, the proton diffusion coefficient can be then cal-
culated from the fitting results of the AC impedance based
on the finite diffusion model (Eq. (12)). The diffusion co-
efficients for the EMD at various stages of the discharge
were estimated based on the crystallite size calculated from
(1 1 0) peak by Scherrer equation, (1 2 1) and (0 2 1) diffrac-
tion peaks by Warren–Averbach theory.Fig. 5A and Bshows
the proton diffusion coefficients at various DOD estimated
by the semi-infinite diffusion model and the finite diffusion
model with the crystallite size estimated from (1 1 0) peak
by Scherrer equation, respectively.Fig. 6shows the compar-
ison of the diffusion coefficients at various DOD with the
crystallite size calculated by Warren–Averbach theory from
(1 2 1) and (0 2 1) diffraction peaks. By comparing the results
in Figs. 5 and 6, the diffusion coefficients obtained from the
semi-infinite model and the finite diffusion model have the
similar profile and within the range of 10−15 to 1016.

It is worth to recognizing that, even though the crystal-
lite size of non-discharged EMD was used as the length of
proton diffusion path throughout the discharge at various
stages, the actual length of the diffusion is unlikely to re-
main unchanged. The crystallite size of ramsdellite should
remain unchanged until massive John–Teller distortion col-
lapses the initial crystal structure of EMD. In this study,
the crystallite size can be considered unchanged through-
out the whole range of the discharge. However, the proton
diffusion length may also relate to the proton concentration
in the [1× 2] tunnel. The H concentration increases as the
discharge proceeds. This may explain why the finite diffu-
sion model fitted the experimental results much better than
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Fig. 5. Proton diffusion coefficients inside EMD at various depths of the discharge based (A) semi-infinite diffusion model and (B) infinite diffusion
model with diffusion length calculated from (1 1 0) peak with Scherrer equation.

Fig. 6. Comparison of the proton diffusion coefficients inside EMD at various depths of discharge with Warren–Averbach method from (0 2 1) an (1 2 1)
diffraction peaks, respectively.
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the semi-infinite diffusion model for the partially discharged
electrode.

4. Conclusions

The proton diffusion coefficients at various stages of the
discharge have been estimated by means of AC impedance
and numerical fitting techniques with finite diffusion model.
The following points are of value to be noted:

1. Determination of proton diffusion coefficients inside the
lattice of EMD is the essential step to the understanding
of the proton intercalation process.

2. Combining with numerical fitting techniques, AC
impedance is one of effective method to estimate the
diffusion coefficients in solid state.

3. Three factors can contribute to the XRD peak broadening.
They are instrument, crystallite size and microstrain.

4. EMD is a highly disordered material, (1 2 1) and (0 2 1)
diffraction line, which are not affected by De Wolff dis-
order are better choices than (1 1 0) diffraction line for
the calculation of the crystallite size of EMD.

5. Warren–Averbach method, which takes into considera-
tion all three factors, yields more realistic results for the
estimation of the crystallite size of EMD than Scherrer
equation, which did not take into account of microstrain.

6. The finite diffusion model fitted experimental results bet-
ter than the semi-infinite diffusion model.

7. Proton diffusion in EMD occurs in the [1×2] tunnel of the
ramsdellite domains. The crystallite size of ramsdellite
can be treated as the proton diffusion length.
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