

# Advanced Organic Chemistry/ Organic Synthesis – CH 621 Protecting Groups

Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

# **Protecting Groups – Strategy**



To protect one sensitive group, while the "active" group should remain unchanged.

- (Selective reactions)
- Protecting groups, when the above is not possible

Ideal protection:

- Introduce under mild conditions
- Stable under the target reaction conditions
- Removable under mild conditions

- Orthogonal protection



#### **Protection of Alcohols**

# Formation of ethers

Ether protective groups for alcohols

| Group               | Structure                                                       | Abbreviation     | Normal metho<br>removal                                                   |
|---------------------|-----------------------------------------------------------------|------------------|---------------------------------------------------------------------------|
| Benzyl              | OCH <sub>2</sub> Ph                                             | OBn              | H2, cat. Pd/C                                                             |
| p-Methoxybenzyl     | OCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> | OPMB             | DDQ or<br>Ce(NH <sub>4</sub> ) <sub>3</sub> (NC                           |
| Trityl              | OCPh <sub>3</sub>                                               | OTr              | CH <sub>3</sub> CO <sub>2</sub> H or<br>CF <sub>1</sub> CO <sub>2</sub> H |
| t-Butyl             | OC(CH <sub>3</sub> ) <sub>3</sub>                               | OBu <sup>t</sup> | HCl or HBr o<br>CF1CO1H                                                   |
| Allyl               | OCH <sub>2</sub> CH=CH <sub>2</sub>                             | -                | cat. $(Ph_3P)_3R$<br>then $Hg^{2+}$ , H                                   |
| Methoxymethyl       | OCH <sub>2</sub> OCH <sub>3</sub>                               | OMOM             | HCl or CF <sub>3</sub> C                                                  |
| Methylthiomethyl    | OCH2SCH3                                                        | OMTM             | HgCl <sub>2</sub>                                                         |
| Methoxyethoxymethyl | OCH2OCH2CH2OCH3                                                 | OMEM             | TiCl4 or ZnB1                                                             |
| 1-Ethoxyethyl       | OCH(CH <sub>3</sub> )OC <sub>2</sub> H <sub>5</sub>             |                  | CH <sub>3</sub> CO <sub>2</sub> H                                         |
|                     |                                                                 |                  |                                                                           |

(a) Benzyl unaffected by these conditions.

(b) Causes isomerization to the enol ether, OCH=CHCH3, which is then easily hydrolysed.





# **Protection of Alcohols**

# Formation of silyl ethers

| Table 10.2 Silyl ether prote | tive groups for alcohols |
|------------------------------|--------------------------|
|------------------------------|--------------------------|

| Group                       | Structure                                                           | Abbreviation   |
|-----------------------------|---------------------------------------------------------------------|----------------|
| Trimethylsilyl              | OSi(CH <sub>3</sub> ) <sub>3</sub>                                  | OTMS           |
| t-Butyldimethylsilyl        | OSi(CH <sub>3</sub> ) <sub>2</sub> C(CH <sub>1</sub> ) <sub>3</sub> | OTBS or OTBDMS |
| Triisopropylsilyl           | OSi(CH(CH <sub>3</sub> ) <sub>2</sub> ) <sub>3</sub>                | OTIPS          |
| t-Butyldiphenylsilyl        | OSiPh <sub>2</sub> C(CH <sub>2</sub> ) <sub>2</sub>                 | OTBDPS         |
| Trimethylsilylethoxymethoxy | OCH2OCH2CH2Si(CH3)3                                                 | OSEM           |



# **Protection of Alcohols**

#### Formation of esters

| Group                                                                              | Structure                                                   | Abbreviation          | Normal method of removal                                                                         |
|------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|
| Acetyl                                                                             | OCOCH3                                                      | OAc                   | Base, e.g. K <sub>2</sub> CO <sub>3</sub> ,<br>CH <sub>2</sub> OH                                |
| Trifluoroacetyl<br>Trimethylacetyl (pivaloyl)<br>Benzoyl<br>2,4,6-Trimethylbenzoyl | $OCOCF_3$<br>$OCOC(CH_3)_3$<br>OCOPh<br>$OCOC_6H_2(CH_3)_3$ | OPiv<br>OBz<br>OCOMes | Mild base<br>NaOH<br>NaOH or (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub><br>LiAlH <sub>4</sub> |

Table 10.3 Ester protective groups for alcohols



# **Protection of Alcohols**

# Formation of esters



# **Protecting Groups – Carboxylic acids**



#### Formation of esters

| Group               | Structure                                           | Abbreviation     |
|---------------------|-----------------------------------------------------|------------------|
| Benzyl              | OCH <sub>2</sub> Ph                                 | OBn              |
| p-Methoxybenzyl     | OCH2C6H4OCH3                                        | OPMB             |
| Trityl              | OCPh <sub>3</sub>                                   | OTr              |
| t-Butyl             | OC(CH <sub>3</sub> ) <sub>3</sub>                   | OBu <sup>t</sup> |
| Allyl               | OCH2CH=CH2                                          | -                |
| Methoxymethyl       | OCH <sub>2</sub> OCH <sub>3</sub>                   | OMOM             |
| Methylthiomethyl    | OCH <sub>2</sub> SCH <sub>3</sub>                   | OMTM             |
| Methoxyethoxymethyl | OCH2OCH2CH2OCH3                                     | OMEM             |
| 1-Ethoxyethyl       | OCH(CH <sub>3</sub> )OC <sub>2</sub> H <sub>5</sub> | -                |

# **Protecting Groups – Carboxylic acids**



# Formation of *ortho* esters



# **Protecting Groups – Thiols**



# Formation of ethers

Avoid oxidative conditions (S oxidation)

| Group               | Structure                                           | Abbreviation     |
|---------------------|-----------------------------------------------------|------------------|
| Benzyl              | OCH <sub>2</sub> Ph                                 | OBn              |
| p-Methoxybenzyl     | OCH2C6H4OCH3                                        | OPMB             |
| Trityl              | OCPh <sub>3</sub>                                   | OTr              |
| t-Butyl             | OC(CH <sub>3</sub> ) <sub>3</sub>                   | OBu <sup>t</sup> |
| Allyl               | OCH2CH=CH2                                          | -                |
| Methoxymethyl       | OCH <sub>2</sub> OCH <sub>3</sub>                   | омом             |
| Methylthiomethyl    | OCH2SCH3                                            | OMTM             |
| Methoxyethoxymethyl | OCH2OCH2CH2OCH3                                     | OMEM             |
| 1-Ethoxyethyl       | OCH(CH <sub>3</sub> )OC <sub>2</sub> H <sub>5</sub> | -                |

#### **Protecting Groups – Aldehydes and Ketones**







#### **Protecting Groups – 1,2- and 1,3-diols**



Acetals



# **Protecting Groups – Amines**





Usually: - N-benzyl - N-trityl - N-allyl

# **Protecting Groups – Amines**



# **N-Acylation**

Usually:

- N-benzoyl
- N-acetyl
- N-trifluoroacetyl



# **Protecting Groups – Amines**



# Formation of carbamates





| Group                             | Structure                                                                           | Abbreviation         | Normal i<br>of remov                         |
|-----------------------------------|-------------------------------------------------------------------------------------|----------------------|----------------------------------------------|
| Ethoxycarbonyl                    | $N{-}CO_2C_2H_5$                                                                    | -                    | C <sub>3</sub> H <sub>7</sub> SLi<br>HBr, CH |
| Benzyloxycarbonyl                 | N-CO2CH2Ph                                                                          | N-Cbz <sup>(a)</sup> | H2, cat. 1                                   |
| t-Butoxycarbonyl                  | N-CO <sub>2</sub> C(CH <sub>3</sub> ) <sub>3</sub>                                  | N-Boc                | HCl                                          |
| Allyloxycarbonyl                  | N-CO <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub>                                | N-Alloc              | Cat. (Ph<br>then H                           |
| 9-Fluorenylmethoxy-<br>carbonyl   | 25                                                                                  | N-Fmoc               | Piperidin<br>morpholi                        |
| Trimethylsilylethoxy-<br>carbonyl | N-CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub> | -                    | F                                            |

(a) Or simply N-Z.

(b) Causes isomerization to N-CO2CH=CHCH3, which is then easily hydrolysed.























































