

Advanced Organic Chemistry/ Organic Synthesis – CH 621

Asymmetric Synthesis

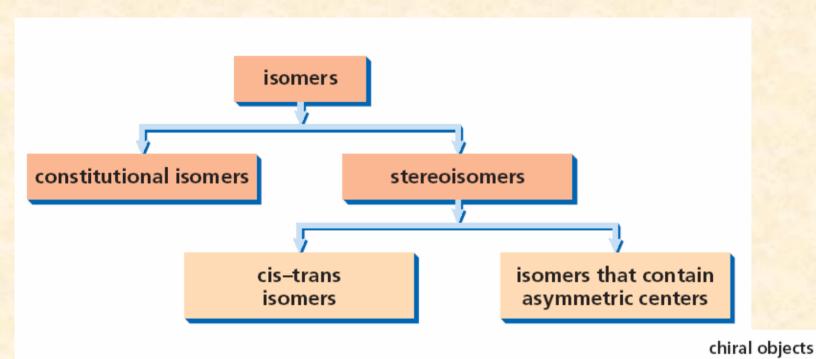
Bela Torok

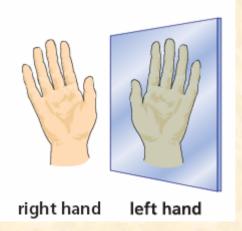
Department of Chemistry
University of Massachusetts Boston
Boston, MA

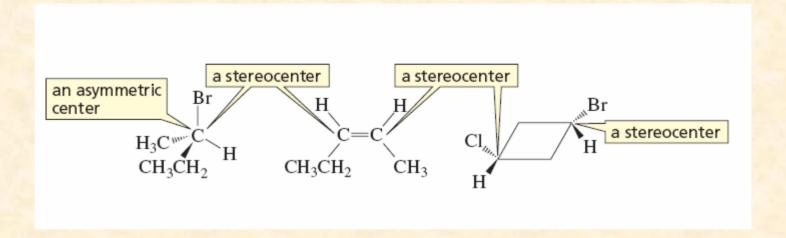
Major Goal

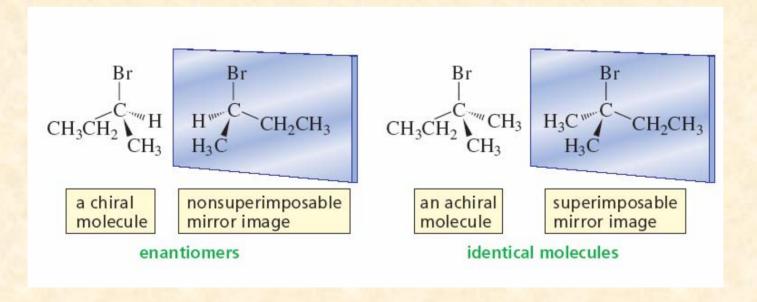
Synthesis of Chiral Compounds

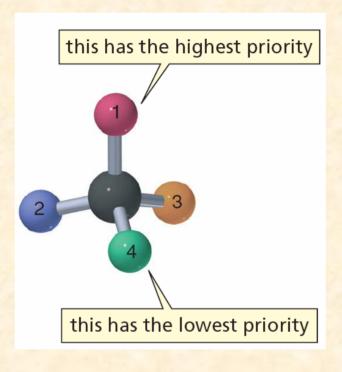
Importance of chiral compounds
 (pharmaceuticals, non-linear optical devices, biochemical processes, molecular recognition)

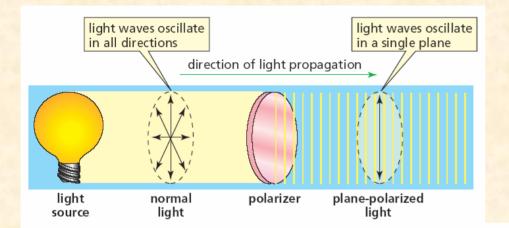


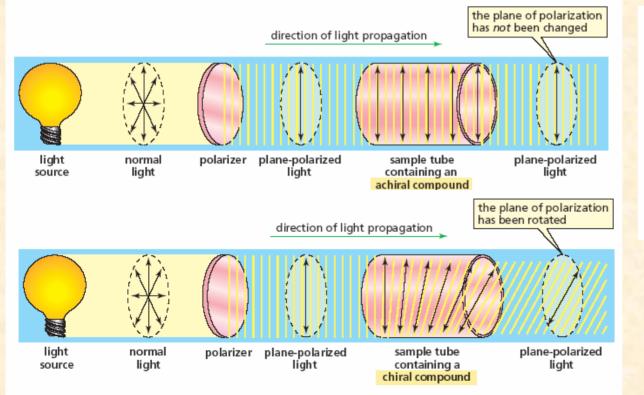

$$[\alpha]_{D}^{20 \, ^{\circ}C} = +62.5$$

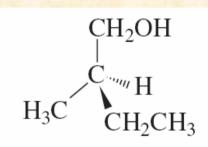

Thalidomide



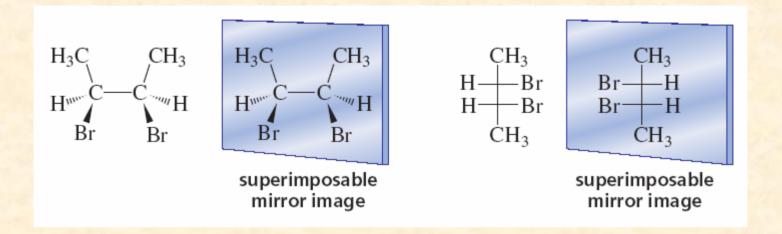


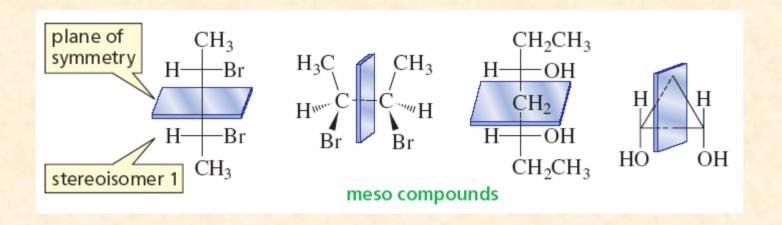






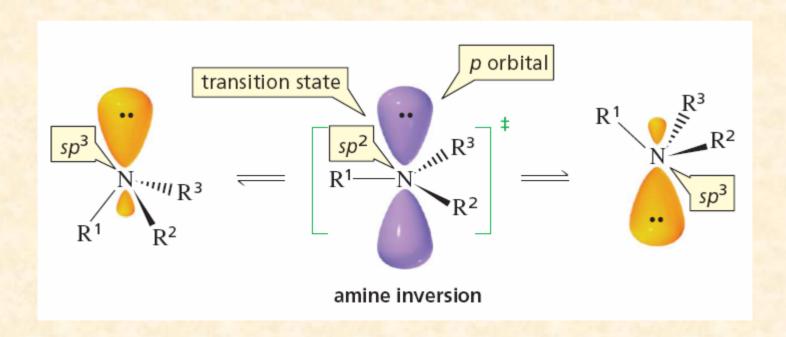
$$[\alpha]_{\lambda}^{T} = \frac{\alpha}{l \times c}$$





(R)-2-methyl-1-butanol

$$[\alpha]_{\rm D}^{20\,{\rm ^{\circ}C}} = +5.75$$



Other elements with Central Chirality

Si, Ge, P, N, S

Other types of Chirality

Planar (or axial)

Helical

Pasteur

Diastereomer pair formation

Most important preparative method

Chiral Chromatography

GC

HPLC

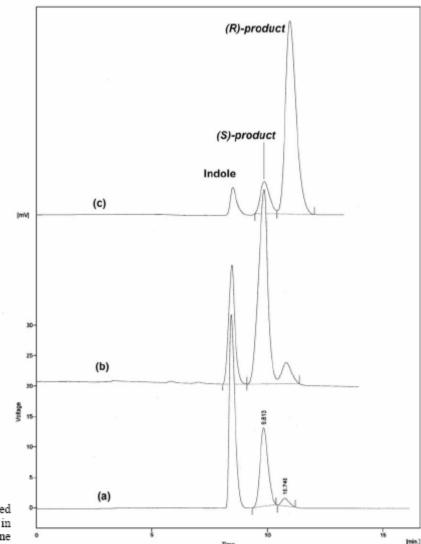
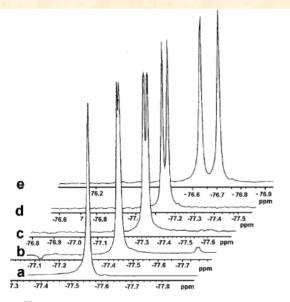


Figure 1.

Assignment of 3, 3, 3-trifluoro-2-hydroxy-2-(indol-3-yl)-propionic acid ethyl ester enantiomers based on a comparison with an authentic sample: starting material (indole) and reaction products obtained in the reaction of indole and ethyl 3,3,3-trifluoropyruvate catalyzed by (a) Cu(OTf)₂-bisoxazoline (authentic sample), (b) cinchonidine and (c) cinchonine



F₃C OH

Ar

NMR Spectroscopy

- Chiral Reagents (Mosher's chloride, shift reagents)
- Chiral Solvation

Figure 1. ¹⁹F NMR resonances of CF₃ fluorines in 1c in the presence of cinchona alkaloids: (a) no alkaloid, (b) cinchonine, (c) cinchonidine, (d) quinine, (e) quinidine (376 MHz, CDCl₃, 25 °C).

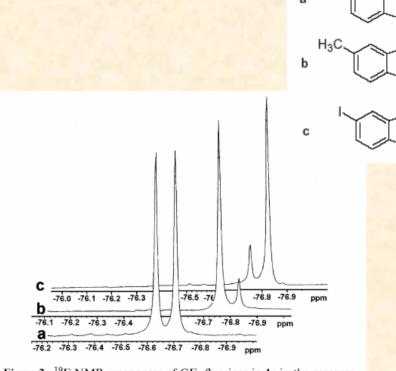
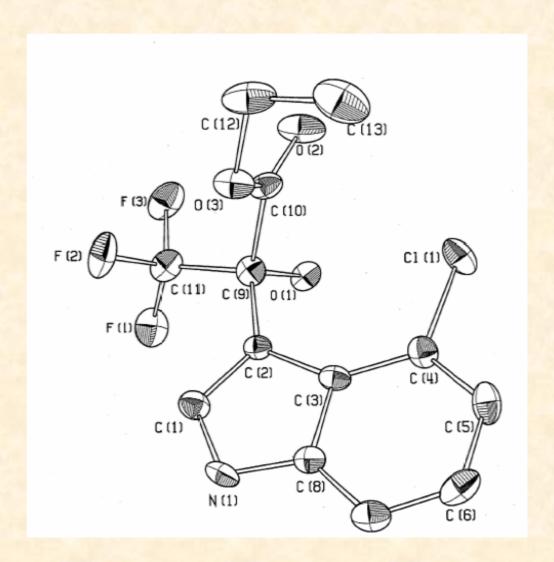



Figure 2. 19 F NMR resonances of CF₃ fluorines in 1c in the presence of quinidine (QD): (a) racemic sample, (b) (S)-isomer in excess, (c) (R)-isomer in excess (376 MHz, CDCl₃, 25 $^{\circ}$ C).

X-ray crystallography

Routes to chiral compounds

Chiral Resolution

Chiral derivatization agent

Chiral Product

(up to 50% yield and 100% ee)

Chiral Synthesis

Stoichiometric and Catalytic Methods

Chiral Product

(up to 100% yield and 100% ee)

enantiomer

diastereoisomers

ee – enantiomeric excess (ee % =
$$\frac{|[R] - [S]|}{[R] + [S]} \times 100$$
)

diastereomeric excess (d.e.)

Strategy and classification of methods

The main classes of natural product

- (i) amino acids (and their reduction products, e.g. amino alcohols);
- (ii) other amines and amino alcohols, including alkaloids;
- (iii) hydroxy acids (lactic, tartaric, mandelic, etc.);
- (iv) terpenes, such as α -pinene, camphor, etc.;
- (v) carbohydrates;
- (vi) enzymes and other proteins.

"0" generation method

(i) 'First-generation' or substrate-controlled methods.

$$S-X^* \xrightarrow{R} P^*-X^*$$

(ii) 'Second-generation' or auxiliary-controlled methods.

$$S \xrightarrow{A^*} S - A^* \xrightarrow{R} P^* - A^* \xrightarrow{-A^*} P^*$$

(iii) 'Third-generation' or reagent-controlled methods.

$$S \xrightarrow{R^*} P^*$$

(iv) 'Fourth-generation' or catalyst-controlled methods.

$$S \xrightarrow{R} P^*$$

First-generation methods: the use of chiral substrates

HO H
$$_{CH_3}$$
 $_{B_2H_6}$ $_{H_3B}$ $_{CH_3}$ $_{CH_3}$

First-generation methods: the use of chiral substrates

Second-generation methods: the use of chiral auxiliaries

Alkylation of chiral enolates

Second-generation methods: the use of chiral auxiliaries

asymmetric aldol reaction,

Second-generation methods: the use of chiral auxiliaries

asymmetric aldol reaction.

Second-generation methods: the use of chiral auxiliaries

Second-generation methods: the use of chiral auxiliaries

Second-generation methods: the use of chiral auxiliaries

Second-generation methods: the use of chiral auxiliaries

Second-generation methods: the use of chiral auxiliaries

$$(CH_{3})_{2}CH \qquad (CH_{3})_{2}CH \qquad (CH_$$

Second-generation methods: the use of chiral auxiliaries

Alkylation of chiral imines and hydrazones

$$S=(-)-\text{phenylalanine} \begin{tabular}{c} (ii) & SOCI_2, & CH_3OH \\ \hline CO_2H & (ii) & SOCI_2, & CH_3OH \\ \hline $(iii) & NaBH_4$ & (iii) & KH, & CH_3I \\ \hline VA_1 & (ii) & CiAIH_4$ & (ii) & CiAIH_4$ & (ii) & CiAIH_4$ & (iii) & CiAIH_4$ & (iii)$$

Second-generation methods: the use of chiral auxiliaries

Alkylation of chiral imines and hydrazones

Second-generation methods: the use of chiral auxiliaries

Alkylation of chiral imines and hydrazones

Second-generation methods: the use of chiral auxiliaries

Alkylation \(\alpha \) to nitrogen: chiral formamidines

Second-generation methods: the use of chiral auxiliaries

Alkylation \(\alpha \) to nitrogen: chiral formamidines

Second-generation methods: the use of chiral auxiliaries

Alkylation \(\alpha \) to nitrogen: chiral formamidines

Second-generation methods: the use of chiral auxiliaries

Asymmetric Diels-Alder reactions

Second-generation methods: the use of chiral auxiliaries

Self-regeneration of stereogenic centres

$$\begin{array}{c} H \\ CO_2H \\ \end{array} \begin{array}{c} (CH_3)_3CCHO \\ (CH_3)_3C \\ \end{array} \begin{array}{c} H \\ CO_2H \\ \end{array} \begin{array}{c} (CH_3)_3C \\ \end{array} \begin{array}{c} (CH_3)_3C$$

Second-generation methods: the use of chiral auxiliaries

Chiral sulfoxides

Ar
$$S=O+CH_3C_6H_4$$
)

 $Ar = p-CH_3C_6H_4$)

 $Ar = Men^*-OH$)

 $Ar = P-CH_3C_6H_4$
 $Ar = Men^*-OH$
 $Ar = Men^*-OH$

Second-generation methods: the use of chiral auxiliaries

Chiral sulfoxides

Third-generation methods: the use of chiral reagents

Asymmetric reduction using lithium aluminium hydride

$$LiAIH_4 + 3(CH_3)_3COH \longrightarrow LiAIH[OC(CH_3)_3]_3$$

Third-generation methods: the use of chiral reagents

Asymmetric reduction using boron reagents

Third-generation methods: the use of chiral reagents

Asymmetric hydroboration

Fourth-generation methods: asymmetric catalysis

Catalytic asymmetric alkylation

Fourth-generation methods: asymmetric catalysis

Catalytic asymmetric conjugate addition

Fourth-generation methods: asymmetric catalysis

Catalytic asymmetric hydrogenation

Fourth-generation methods: asymmetric catalysis

Asymmetric oxidations

Fourth-generation methods: asymmetric catalysis

Asymmetric oxidations

Fourth-generation methods: asymmetric catalysis

Asymmetric oxidations

1,2-aminohydroxylation

Fourth-generation methods: asymmetric catalysis

Asymmetric aziridination and cyclopropanation

Ph
$$CO_2CH_3$$
 Phl=NTs CO_2CH_3 CO_2CH_3

Fourth-generation methods: asymmetric catalysis

Asymmetric aziridination and cyclopropanation

Fourth-generation methods: asymmetric catalysis

Asymmetric aziridination and cyclopropanation

Simmons-Smith reaction

Fourth-generation methods: asymmetric catalysis

Asymmetric aziridination and cyclopropanation

Fourth-generation methods: asymmetric catalysis

Reactions catalysed by enzymes and other proteins

. Thermoanaerobium brockii,

$$CO_2C_2H_5$$
 H OH $CO_2C_2H_5$
63: R = CH₃
64: R = C₂H₅

horse liver alcohol dehydrogenase

bovine serum albumin.