A Heterogeneous \textit{cis}-Dihydroxylation Catalyst with Stable, Site-Isolated Osmium – Diolate Reaction Centers**

An Severeyn, Dirk E. De Vos, Lucien Fiermans, Francis Verpoort, Piet J. Grobet, and Pierre A. Jacobs*

Osmium tetroxide is by far the most versatile catalyst for \textit{cis}-dihydroxylation (DH) of double bonds.1–3 When homogeneous catalysts are used, free OsO\textsubscript{4} is always present in some step of the catalytic cycle, and the high toxicity and volatility of OsO\textsubscript{4} have hitherto obstructed industrial application. Previous attempts to immobilize OsO\textsubscript{4} used polymers, for example, with coordination of OsO\textsubscript{4} on polyvinylpyridine.[3, 4] However, hydrolysis of the intermediate OsVII diolate complex requires that Os is detached from the polymeric Lewis base,[3] and this implies an inherent liability to Os leaching. Similarly, reports on immobilized alkaloids for asymmetric DH mention that Os leaching necessitates Os supplementation in subsequent runs.[6] In another attempt, OsO\textsubscript{4} was entrapped in polystyrene microspheres, but the mechanism by which OsO\textsubscript{4} is retained within the polymer is not understood.[7] Herein we report a solid with OsVIII type reactivity, and with a persistent bond between Os and the support. Rigorous heterogeneity tests and reactions with 12 olefins substantiate the value of the new Os catalyst.

Our approach is rooted in the mechanism of the \textit{cis}-dihydroxylation, which comprises two stages: 1) attack of the OsVIII \textit{cis}-dioxo complex on the olefin (osmylation), 2) reoxidation of OsVII to OsVIII and hydrolytic release of the diol. Two points are particularly relevant. First, if the hydrolytic conditions are not too drastic, \textit{tetrasubstituted} olefins are not converted into \textit{cis}-diols.[8, 9] These olefins are smoothly osmylated to an osmate(vi) ester, but the rate of subsequent hydrolysis is zero (0 % yield for a tetrasubstituted olefin vs. 83 % for a trisubstituted olefin, ref. [8]). Second, an OsVIII monodiolate complex can be reoxidized to \textit{cis}-dioxo OsVIII without release of the diol; subsequent addition of a second olefin results in an Os bisdiolate complex.[9] These two properties make it possible to immobilize a catalytically active Os compound by the addition of OsO\textsubscript{4} to a tetrasubstituted olefin that is covalently linked to a silica support (1\textbf{a}, Scheme 1). The tetrasubstituted diolate ester (1\textbf{b}) which is

\begin{center}
\textbf{COMMUNICATIONS}
\end{center}

(1\textbf{a}). The coordinates of Arg62\textsubscript{Ala}, Arg62\textsubscript{Pro}, Ala-Pro, W\textsubscript{a}, W\textsubscript{b}, W\textsubscript{c}, and W\textsubscript{d} were fixed during occupancy refinement. Arg62\textsubscript{Ala} represents the Arg62 conformation without Ala-Pro bound and Arg62\textsubscript{Pro} represents the Arg62 conformation with Ala-Pro bound to ceCyp3. The B-factors of Arg62\textsubscript{Ala}, W\textsubscript{a}, W\textsubscript{b}, W\textsubscript{c}, and W\textsubscript{d} were fixed to the same B-factor values as those of the native structure. Individual atomic B-factors for Arg62\textsubscript{Ala} and Ala-Pro were refined together with occupancy (Figure 4). The restraints applied in the occupancy refinement are summarized below:

\[
\begin{align*}
Q_{\text{Arg62Ala}} + Q_{\text{Arg62Pro}} &= 1 \\
Q_{\text{Arg62Pro}} &= Q_l \\
Q_{\text{Arg62Ala}} &= Q_{\text{Wa}} = Q_{\text{Wb}} = Q_{\text{Wc}} = Q_{\text{Wd}}
\end{align*}
\]

\(Q_{\text{Arg62Pro}}\) is the occupancy of the Arg62 conformation with no Ala-Pro binding, \(Q_{\text{Arg62Ala}}\) is the occupancy of the Arg62 conformation with Ala-Pro binding, and \(Q_l\) is the occupancy of Ala-Pro.

PPase assay:it was shown that \(c\)-chymotrypsin selectively hydrolyzes the C-terminal p-nitroanilide bond of the substrate in the \textit{trans} X-Pro conformer only. This hydrolysis releases the chromophore 4-nitroaniline, the accumulation of which is recorded by measuring the absorbance at 400 nm as a function of time. Substrate (\(N\)-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, Bachem AG) was dissolved in LiCl\(2\cdot2\cdot2\)-trifluoroethanol (LiCl/TFE) to give a stock solution of 100 mM. The experiment took place at 4 °C. Constant temperature was maintained within the cuvette by a Peltier (PTP-1) temperature control unit. A Perkin – Elmer UV/Vis Lambda 20 spectrophotometer was used.

Proteins: ceCyp3 solution was freshly prepared before the experiment from a frozen stock solution, at the appropriate concentration, by dilution in buffer 50 mM HEPES, 100 mM NaCl, pH 8.0 (buffer A). \(\alpha\)-chymotrypsin (Sigma): In a typical experiment 10 \(\mu\)L of 20 mM ceCyp3 was made up to 870 \(\mu\)L with buffer A and the appropriate volume of Ala-Pro in a 1-mL cuvette. The cuvette was then preincubated for 30 min on ice. Immediately before the assay, 100 \(\mu\)L of chymotrypsin solution (50 mg/mL in 10 mM HCl) was added, followed by 30 \(\mu\)L of a 3.7 \(\mu\)M stock solution of Suc-Ala-Ala-Pro-PNA in LiCl (470 mM)/TFE. The reaction progress was monitored by the absorbance change at 400 nm that accompanies the hydrolysis of the amide bond and the release of 4-nitroaniline.

Received: September 8, 2000 [Z.15779]

\[14\] G. M. Sheldrick, SHELX97, University of Götingen, 1997.

\[17\] Crystallographic data for the structures reported in this paper have been deposited with the Protein Data Bank for supplementary publication no. PDB-IE8K (see http://www.rcsb.org/pdb/index.html).

formed at one side of the Os atom is stable, and keeps the catalyst fixed to the support material. The catalytic reaction can then take place at the free coordination sites of Os.

For the preparation of a silica-anchored tetrasubstituted olefin, silica is first functionalized with 3-aminopropyltrimethoxysilane (Scheme 1).[11] Next 3,4-dimethylcyclohex-3-enylcarbonyl chloride is added, which reacts with the grafted amino groups to form an amide. The 3,4-dimethylocyclohex-3-enylcarbonyl chloride is prepared by the Diels–Alder reaction of 2,3-dimethyl-1,3-butadiene and ethyl acrylate, and conversion of the ester into the acid chloride.[12] Next, OsO₄ adds to the double bond in the functionalized support 1a → 1b. To avoid handling the poisonous OsO₄, hexavalent K₂OsO₂(OH)₄ is used as an Os source, and oxidized in situ with N-methylmorpholine N-oxide (NMO) in tert-butyl alcohol:dichloromethane (2:1).[13] Excess OsO₄ is removed from 1b by threefold washing with the same solvent mixture.

Physicochemical observations confirm that Os is immobilized in surface-linked diolate complexes. In solution chemistry, reaction of OsO₄ with an olefin gives rise to dark brown Os VI complexes. In the reaction of the solid support 1a with OsO₄, the solid (1b) turns dark brown, while no color develops in solution. Diffuse reflectance spectroscopy measurements of the solid show intense absorptions at wavelengths shorter than 700 nm. More detailed information is obtained from solid-state ¹³C NMR spectrometry (Figure 1). The amide signal at δ = 177 (for 1a) confirms the successful attachment of the acyl group to the surface. The spectrum of the Os-free material (1a) shows a C=C signal at δ = 124, characteristic for the tetrasubstituted olefin. When OsO₄ is added (→ 1b), this signal is replaced by a new signal at δ = 92. The tertiary alcohol groups in Os(vi) diolate complexes (prepared from OsO₄ and 3,4-dimethylocyclohex-3-enylcarboxylic acid) have a resonance signal in solution NMR spectroscopy between δ = 90 and 95. Thus, the intense peak at δ = 92 in the solid-state spectrum of 1b confirms that Os is bound by esters of tertiary diols. The immobilized Os is easily observed with X-Ray photoelectron spectroscopy (XPS). Os 4f⁷/₂ lines at 53.6 eV and 51.2 eV demonstrate that osmium is in the +Ⅷ and +Ⅳ state. Based on reported values, this is clear evidence that the octavalent OsO₄ is reduced in the reaction with the covalently linked double bond.[14]

Catalysis with the new solid Os materials reveals that the activity strongly depends on the concentration of the Os ester groups on the surface: the highest activity is observed for the lowest concentration of Os-binding groups! (Table 1, entries 1 – 3). The Os loading is easily controlled by performing the surface functionalization with mixtures of silylating agents

![Scheme 1. Immobilization of Os in a tertiary diolate complex, and proposed catalytic cycle for cis-dihydroxylation ([O] = N-methylmorpholine N-oxide).](image)

![Figure 1. Solid state ¹³C MAS NMR spectra of 1a (top), with immobilized tetrasubstituted olefin, and 1b (bottom), that is, 1a after addition of OsO₄ to the double bond (high power proton decoupling; 45° pulses with 10 s recycle time; spinning rate 10 kHz).](image)
Verted to cis phatic olefins and cyclic olefins are stereoselectively converted in high yields (entries 1 – 7). Note that the excellent chemoselectivity has been demonstrated to be crucial to obtain an active and truly heterogeneous Os catalyst.

Stringent heterogeneity tests were performed with the 3b catalyst, by splitting the reaction suspension in the dihydroxylation of 1-hexene at a conversion of 21 %, and monitoring the conversion in the suspension and in the clear supernatant. Zero activity was found in the supernatant, while the reaction continues in the suspension (21 % in the clear solution vs. 60 % in the suspension; Table 2, entry 13). This test was successfully performed for the reaction of 3b with several olefins, however, it fails for OsO4 bound on polyvinylpyridine; this is because of the dissociation of the coordinate bond between Os and the nitrogen base in the hydrolytic release of the diol.

With 3b, we succeeded in oxidizing olefins to the corresponding cis-diols with an excellent conversion and selectivity (Table 2). Monosubstituted, cis and trans disubstituted aliphatic olefins and cyclic olefins are stereoselectively converted to cis diols with good conversions and selectivities over 98 % (entries 1 – 7). Note that the excellent chemoselectivity of the homogeneous reactions with NMO is preserved in the heterogeneous system[19] oxidation products such as the ketol make up less than 1 % of the products. Aromatic olefins such as styrene and indene are suitable substrates as well (entries 8 – 9). The reaction proceeds more slowly with a trisubstituted olefin. This is not unexpected, since in our mild conditions, the hydrolysis of the trisubstituted diolate is slow because of steric hindrance.

As is highlighted by the heterogeneity tests, our Os-immobilization concept, and the formation of a stable tetrasubstituted diolate complex, is to date the only solution to the problem of producing such Os supported heterogeneous catalysts. The concept can be expanded to other catalyst carriers that form nonhydrolyzable bonds with Os in the conditions of the catalytic dihydroxylation. Site isolation has been demonstrated to be crucial to obtain an active and truly heterogeneous Os catalyst.

Table 1. Heterogeneous cis-dihydroxylation of 1-hexene: effect of the dilution of active sites with propyltrimethoxysilane (PrTMS)[3] comparison with homogeneous dihydroxylation with or without 2,3,4-trimethyl-2-pentene.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>PrTMS:NH2PrTMS</th>
<th>r [h]</th>
<th>Conversion [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>0:1</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>1:1</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3b</td>
<td>9:1</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>OsO4[2]</td>
<td>–</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] 100 mg supported catalyst, 1-hexene (1.6 mmol), NMO (1.6 mmol), solvent (3 mL), and RT unless otherwise stated, [b] NMO:1-hexene:2,3,4-trimethyl-2-pentene:Os = 400:400:10:1; 1-hexene is added 4 h after the other reagents.

Table 2. Cis-dihydroxylation of olefins with NMO and the heterogeneous 3b catalyst.[3]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Olefin</th>
<th>r [h]</th>
<th>Conversion [%]</th>
<th>Selectivity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-pentene</td>
<td>48</td>
<td>83</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>1-hexene</td>
<td>48</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>1-heptene</td>
<td>48</td>
<td>96</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>cyclopentene</td>
<td>48</td>
<td>83</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>cyclohexene</td>
<td>48</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>cis-2-hexene</td>
<td>48</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>trans-2-hexene</td>
<td>48</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>styrene</td>
<td>48</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>indene</td>
<td>48</td>
<td>72</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>2-methyl-2-pentene</td>
<td>48</td>
<td>50</td>
<td>99</td>
</tr>
<tr>
<td>11</td>
<td>ethyl trans-cinnamate</td>
<td>24</td>
<td>65</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>ethyl trans-crotonate</td>
<td>48</td>
<td>85</td>
<td>99</td>
</tr>
<tr>
<td>13b</td>
<td>1-hexene</td>
<td>10</td>
<td>21</td>
<td>20, filtrate 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20, suspension 60</td>
</tr>
</tbody>
</table>

[a] reaction conditions: 100 mg heterogeneous catalyst (4 x 10^-4 mol Os), olefin (1.6 mmol), NMO (1.6 mmol), solvent (3 mL), H2O (200 mL), RT. [b] A second run was performed with the used catalyst from entry 2. After 48 h, conversion and selectivity were again 99 and 98 % respectively. [c] Filtrate test: the reaction mixture is split after 10 h; further conversion in filtrate and suspension is determined 20 h later.

Experimental Section

The support material was commercial SiO2 60 from Fluka, predried at 150 °C. Surface functionalization was performed by standard reported techniques.[20] For the functionalization of the support with Os, a solution containing OsO4 (4 x 10^-2 mmol) was treated for 4 h with the support (100 mg containing 10^-7 mmol of double bonds in the case of catalyst 3b). After all the OsO4 had reacted with the support, the catalyst was thoroughly washed with BuOH:CH2Cl2 (2:1) to remove traces of unbound OsO4.

© WILEY-VCH Verlag GmbH & Co. KGaA, 2001
COMMUNICATIONS Angew. Chem. Int. Ed. 2001, 40, No. 3 588 1433-7851/01/4003-0588 $ 17.50+ 50/0
In a typical catalytic dihydroxylation, the 3b material (100 mg) was added to a mixture of the olefin (1.6 mmol), NMO (1.6 mmol), and water (200 μL) in BuOH:CH2Cl2 (5 mL, 2:1) solvent. The mixture was stirred at room temperature and regularly analyzed by GC.

Received: August 18, 2000 [Z.15661]

COMMUNICATIONS

Stereoselective Nucleophilic Trifluoromethylation of N-([tert-Butylsulfinyl]-silane)**

G. K. Surya Prakash,* Mihirbaran Mandal, and George A. Olah*

Trifluoromethylated amines are important building blocks for pharmaceutical research.[1] The CF3 group, because of its strongly electron withdrawing nature, lowers the basicity of the amide bond towards nonspecific proteolysis[2] when these amines are incorporated into peptides, as well as modify the solubility and desolvation properties.[3] In spite of its prime importance in the drugs industry, direct asymmetric synthesis of trifluoromethylated amines is a challenge. Pirkle et al.[4] and Mosher and Wang[5] prepared 2,2,2-trifluoro-1-phenyl-ethyamine, and Soloshonok and Ono[6] recently reported an elegant method for the preparation of perfluorinated amines by a novel [1,3]-proton shift reaction. However, all of these methods require fluorinated ketones. Nucleophilic transfer of “CF3” to nitroines and imines for direct preparation of trifluoromethylated amines was recently achieved by Nelson et al.[7] and Blazejewski et al.[8] respectively. These methods suffer from low yield and lack generality. We now report the first stereoselective synthesis of trifluoromethylated amines by using TMSF3, 2 (TMS = SiMe3).

Our systematic investigation began as an extension of our earlier work,[9] based on the fact that imines are less electrophilic than carbonyl compounds, and that O–Si bonds are stronger than N–Si bonds. We predicted that strongly electrophilic imines might be a solution to this problem under noncatalytic conditions. When N-sulfonylimidazoles[10] were used as imine sources the reaction indeed proceeded smoothly in the presence of CsF and gave only the trifluoromethylated adducts in 45–95 % yield. Next we turned our attention to sulfinylimines[11] to make this reaction stereoselective. When chiral sulfinylimines[11] were subjected to similar reaction conditions little or no products were obtained. Sulfinylimines were recovered intact, but TMSF3, decomposed. We surmised that sulfinylimines are not reactive enough to add TMSF3. Use of different aprotic solvents and excess of reagents was not helpful. When an excess of TMSF3 was used, a number of unidentified fluorinated products with little or none of the expected adduct were obtained. TMSF3, was recently reported to facilitate addition of TMSF3 to imines. In our case, however, it was ineffective. In all experiments the starting material was recovered.

The above results indicate that TMSF3 decomposes prior to reacting with the starting material. Hence, we thought that increasing the substrate concentration might be a solution to this problem. Indeed, when neat TMSF3 was added to a concentrated solution of the imines, the desired adduct was obtained. The mass balance corresponds to recovered starting material. Attempts to complete the reaction by using excess of reagent in different solvents was, however, unsuccessful.

Imines were treated with TMSF3 in the presence of a stoichiometric amount of CsF to give the corresponding trifluoromethylated sulfimides in 50–65 % yields of isolated products (Table 1, entries 1–7, values in parentheses). Imines with acidic -hydrogen atoms gave lower yields because of competitive deprotonation. The diastereoselectivity was not very high.

During these investigations we thus encountered two problems: a) Conversion of imines was incomplete even in the presence of excess TMSF3 and CsF; b) imines with an -hydrogen atom failed to react with TMSF3 because of the basic nature of CsF. However, we overcame these problems by employing a nonmetallic fluoride source. DeShong et al. reported that tetrabutylammonium difluorotriphenylsilicate (TBAT),[12] a soluble fluoride source, is very effective for nucleophilic displacement reactions. We found that TBAT is also effective in our system. Reaction of N-sulfonylimidazoles

*Support of our work by Loker Hydrocarbon Research Institute is gratefully acknowledged.

Supporting information for this article is available on the WWW under http://www.an gewande.com or from the author.