

d² Correlation Diagram

Ion

Field

Strong Extreme Field Field

Other Configurations and Other Fields

- In principle, we can construct the correlation diagram for any *d*^{*n*} configuration in an octahedral or other field by the Bethe's method of descending symmetry or similar *de novo* methods.
 - As the number of microstates and terms increases with the number of electrons, the labor of constructing the correlation diagrams "from scratch" becomes considerably more onerous.
 - Fortunately, some general relationships between configurations, terms, and ligand environments minimize the needed effort.

Ligand Field Splitting for *d*^{*n*} and *d*^{10-*n*} Terms

- Free-ion terms for a configuration d^n and a configuration d^{10-n} are the same.
 - Each free-ion term splits into a specific collection of terms in any ligand field.
 - The splitting of terms for a configuration d^n is identical to that for the configuration d^{10-n} .

• However, the order of splitting of a given dⁿ term will show the reverse pattern of that of a d¹⁰⁻ⁿ configuration in the same ligand field.

• The same ligand-field term that becomes more stable (moves to lower energy) for a d^n ion will become less stable (moves to higher energy) for a d^{10-n} ion as Δ_0 changes.

Term Splitting of *d*¹ and *d*⁹ *d*¹ Correlation Diagram

- Both configurations give rise to a ²D free-ion term, which is split into ${}^{2}E_{g}$ and ${}^{2}T_{2g}$ terms in an octahedral field.
- In the *d*¹ case, the two terms in the octahedral field arise from the following configurations

- As the Δ_0 gap between t_{2g} and e_g orbitals increases with increasing field strength the ${}^2T_{2g}$ term will become more stable and the 2E_g term will become less stable.
 - Thus, the separation between the two states will increase.
 - The separation is numerically equal to Δ_0 , the magnitude of the field.
 - Relative to the energy of the ²D free-ion term, the ² T_{2g} term will be stabilized by $-(2/5)\Delta_{0}$ and the ² E_{g} term will be destabilized by $+(3/5)\Delta_{0}$.

*d*¹ Correlation Diagram

Term Splitting of *d*¹ and *d*⁹ *d*⁹ Correlation Diagram

• The same terms will arise from the ²D free-ion term of a d⁹ configuration, but they now correspond to the following two configurations in the octahedral field:

 $\begin{array}{c} e_{g} \\ t_{2g} \\ \hline t_{2g} \\ \hline t_{2g} \\ \hline t_{2g} \\ \hline e_{g} \\ \hline f_{2g} \hline f_{2g}$

(\circ = hole = absence of an electron in an orbital)

- Using the hole as a marker, note that the ground state $t_{2g}{}^6e_g{}^3$ configuration consists of two equivalent orbital assignments and therefore must correspond to the 2E_g term.
- Likewise, the three possible orbital assignments for the hole in the $t_{2g}{}^{5}e_{g}{}^{4}$ configuration show that it gives rise to the ${}^{2}T_{2g}$ term.
- Thus, the energy ordering of the terms for d^9 is the reverse of the d^1 case.
- For the $d^9(O_h)$ case the 2E_g term is stabilized by $-(3/5)\Delta_0$ and the ${}^2T_{2g}$ term is destabilized by $+(2/5)\Delta_0$.

d⁹ Correlation Diagram

Hole Formalism

- The relationship between d^n and d^{10-n} term splittings in the same symmetry ligand field is sometimes called the *hole formalism*.
 - The name comes from seeing d^n as a configuration of *n* electrons and d^{10-n} as a configuration of *n* positive holes (equivalent to positrons).
 - A configuration of *n* electrons will interact with a ligand field in the same way as a configuration of *n* positrons, except that repulsions in the former case become attractions in the latter case.

Example: For a d^1 ion in an octahedral field a transition from the ground state to the excited states involves promoting the electron by Δ_0 .

The same kind of transition for a d^9 ion involves demoting the hole by Δ_0 .

The correlation diagram for d¹⁰⁻ⁿ can be obtained by reversing the order of the sets of terms for the various t_{2g}e_g configurations on the strong field side of the dⁿ diagram, relabeling for the appropriate d¹⁰⁻ⁿ configurations, and redrawing the connecting lines, paying attention to the noncrossing rule.

Relationship Between Octahedral and Tetrahedral Fields

- Ligand-field term symbols for the states in a tetrahedral field arising from any *d*^{*n*} free-ion term are the same as those in an octahedral field, except the labels for the tetrahedral terms omit the subscript *g* notation.
- The energies of the new terms in the tetrahedral field have an inverted order.
 - Analogous to the splitting of *d* orbitals into *e* and t_2 levels in a tetrahedral field, which is the inverse of the splitting into t_{2g} and e_g levels in an octahedral field.
 - The tetrahedral and octahedral fields have similar but opposite effects on the *d* orbitals.
 - The same is true for the terms arising from d^n configurations.

Relationship Between Octahedral and Tetrahedral Correlation Diagrams

- The correlation diagram for dⁿ (T_d) can be obtained by reversing the order of the sets of terms for the various t_{2g}e_g configurations on the strong field side of the dⁿ (O_h) diagram, relabeling for the appropriate dⁿ tetrahedral configurations, omitting the subscript g notations from all terms, and redrawing the connecting lines, paying attention to the noncrossing rule.
 - This is essentially the same process we have seen for configurations related by hole formalism.
 - The correlation diagram for $d^n(T_d)$ is qualitatively the same as that for $d^{10-n}(O_h)$, except for minor changes in labels of configurations and term symbols.
 - For example, the $d^2(O_h)$ correlation shown is essentially the same as the correlation for $d^8(T_d)$.
 - The $d^8(O_h)$ correlation shown is essentially the same as the correlation for $d^2(T_d)$.

Tanabe-Sugano Diagrams

- Most chemists refer to a more detailed set of semi-empirical diagrams for octahedral complexes, originally developed by Yukito Tanabe and Satoru Sugano in 1954.
 - A complete set of these diagrams for octahedral complexes of metal ions with the configurations d^2 through d^8 is shown in Appendix D.
- Tanabe-Sugano diagrams plot term energy versus field strength.
 - Energies of all states are plotted relative to the energy of the ground state term; i.e., the ground state energy forms the abscissa of the plot.
 - Term energies and field strengths are expressed as the variables *E/B* and Δ/B , respectively, where *B* is the *Racah parameter*.
 - The Racah parameter is a measure of the interelectronic repulsion and is used to measure the energy difference between states of the same spin multiplicity.

Example: Co²⁺, $3d^7$, has a difference between the 4F and 4P free-ion terms of $15B \approx 14,500 \text{ cm}^{-1}$.

• By using the appropriate values of the Racah parameter, the Tanabe and Sugano diagrams can be used with a variety of metal ions and complexes.

Notes on *d*⁷ Tanabe-Sugano Diagram

- The *d*⁷ diagram, like all such diagrams for configurations that may be either high spin or low spin, has a perpendicular line near the middle marking the change in spin state.
 - To the left of the line (low field strength, high spin), the ground state is ${}^{4}T_{1}$, emerging from the free-ion ${}^{4}F$ term.
 - To the right of the line (high field strength, low spin), the ground state is ${}^{2}E$, and therefore becomes the abscissa beyond the spin-state crossover point.
 - The high-spin ${}^{2}E$ ground state is a continuation of the line for the low-spin excited state ${}^{2}E$ term, which emerges from the ${}^{2}G$ free-ion term.
 - The line for the former high-spin ground state ${}^{4}T_{1}$ term ascends as an excited state on the low-spin (right) side of the diagram.

Making Sense of the Confusion

- Sometimes it can be difficult to trace back the free-ion origin of some of the octahedral terms, particularly on the diagrams for high-spin/low-spin configurations.
- Remember: the spin multiplicities of the split terms must match those of the free-ion terms.
 - Failure to recognize this has caused some texts to erroneously render the d^6 diagram with the low-spin ground state ${}^{1}A_{1}$ term originating from the ${}^{3}D$ free-ion term, rather than the correct ${}^{1}I$ term.

