
Free-Ion Terms to Ligand-field Terms

! Orbital term symbols for free atoms and ions are identical to symbols
for irreducible representations in R3.

" The irreducible representations of R3 include all possible
degeneracies.

L There are no inherent symmetry restrictions on possible
orbital degeneracies in R3.  

! In octahedral and tetrahedral crystal fields (Oh and Td) the highest
dimension irreducible representations are three-fold degenerate.  

L For Oh and Td complexes, free-ion terms with orbital degeneracies
greater than three (D, F, G, ...) must split into new terms, each of
which can have no higher than three-fold degeneracy.  

" In crystal fields of lesser symmetry (e.g., D4h, D3) free-ion orbital
multiplicity terms with (2L + 1) > 2 must split as a result of the
descent in symmetry from R3 to the finite point group of the complex.

L Ligand-field terms can have no higher orbital degeneracy than
allowed by the highest dimension irreducible representation of
the complex's point group.

" In any crystal field all the term symbols, including those that are not
split, are redefined and newly designated with the appropriate
Mulliken symbols of their corresponding irreducible representations
in the point group of the complex.  



Why Terms Split in a Ligand-field

! Lifting the degeneracy among the d orbitals can destroy the
equivalences among microstates that give rise to a particular free-ion
term.  

" Orbital assignments that were energetically equivalent in the free ion
may now be quite distinct in the environment of the complex.

• These differences result in new collections of equivalent
microstates, each of which gives rise to a distinct ligand-field term.

L The total number of microstates for the
configuration, as represented by Dt , remains the
same.  
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Example: Splitting of d 1 Terms in an Oh Field

! The 10 microstates for the free-ion configuration d 1 give rise to a 2D
term.  

! In an octahedral field, the electron may have either the configuration t2g
1

or eg
1:
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! In the ground state, the electron can be in any of the three t2g orbitals
with either spin orientation (ms = ±½).

" This makes six equivalent microstates.

" There are three equivalent orbital assignments, so the overall orbital
degeneracy (orbital multiplicity) is three.

(2L + 1) = 3

" There are only two overall spin orientations (Ms = ±½), so the spin
degeneracy (spin multiplicity) is two.

(2S + 1) = 2

L The resulting term is 2T2g, in which the Mulliken symbol for
the orbital term is appropriately three-fold degenerate.  
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! In the excited state configuration eg
1 the electron can be in either of the

two eg orbitals with either spin orientation (ms = ±½).

" This makes four equivalent microstates.

" There are two equivalent orbital assignments, so the overall orbital
degeneracy (orbital multiplicity) is two.

(2L + 1) = 2

" There are only two overall spin orientations (Ms = ±½), so the spin
degeneracy (spin multiplicity) is two.

(2S + 1) = 2

L The associated term is 2Eg, in which the Mulliken symbol
for the orbital term is two-fold degenerate.



Total Degeneracy, Dt, Remains Unchanged

! Note that the total degeneracy of each ligand-field term, equivalent to
the number of microstates giving rise to it, is the product of its spin
degeneracy times its orbital degeneracy.  

Dt (term) = (2L + 1)(2S + 1)

" For 2T2g we have 
Dt (

2T2g) = (2)(3) = 6

" For 2Eg we have
Dt (Eg) = (2)(2) = 4

L The sum of total degeneracies of the ligand-field terms is
equivalent to Dt for the free-ion configuration d 1.

Dt (d
 1) = Dt (

2T2g) + Dt (
2Eg) = 6 + 4 = 10



Determining Ligand-Field Terms from Free-ion Terms

! The fate of any free-ion term in the point group of a complex can be
determined by applying equations by which the characters for an
irreducible representation in R3 can be calculated:

  
P(E) = 2j + 1

P(i) = ±(2j + 1)

P(F) = ±sin(j +1/2)B



Making Free-ion Terms the Basis for a Representation

! It is possible to apply these equations to both the spin and orbital terms
(S and L states), but the field does not interact directly on the electron
spin in a chemical environment such as a complex ion.

" The new ligand-field terms will retain the original spin multiplicities
of the free-ion terms from which they originate.

" We only apply these equations to the L state of a free-ion term to
determine the identities of the terms that result from splitting in the
ligand field.  

! In the last three equations with variable sign (±), the positive sign is
used with gerade functions and the negative sign is used with ungerade
functions.  

L We will be concerned solely with terms arising from
configurations of d electrons, which are inherently gerade. 
Therefore we will choose the positive expression in all
cases.  

" Nonetheless, in noncentrosymmetric point groups (e.g., Td, D3h) the
resulting Mulliken symbol for the new state will not have a g
subscript notation, which would be inappropriate in such groups.

{If terms arising from p or f configurations are to be considered, use the
negative sign equations, because states arising from these are inherently
ungerade.}



Splitting of dn Free-ion Terms S, P, D, and F in Oh

! S state, for which L = 0, is nondegenerate.  

" As with an s orbital, it has no angular dependence and no orientation
in space.

" Without using the equations, we conclude that in any point group an
S term will not be split and will bear the Mulliken symbol for the
totally symmetric representation.

L  In Oh, S 6666 A1g



Splitting of dn Free-ion Terms S, P, D, and F in Oh

! P state, for which L = 1, is triply degenerate.

" Substituting L = 1 into the equations for the operations of Oh gives
the following representation.

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3Fh 6Fd

'P 3 0 -1 1 -1 3 1 0 -1 -1

" Inspection of the character table shows that 'P / T1g.  

LLLL  In Oh, P 6666 T1g

" A P term is not split, but becomes a triply degenerate T1g term.

{Recall that the three-fold degenerate p orbitals transform as T1u in Oh, but
as we now see a P state transforms as T1g.  The transformations are
different because the p orbitals are inherently ungerade, but the P state
arising from a d configuration is inherently gerade.}



Splitting of dn Free-ion Terms S, P, D, and F in Oh

! D state, for which L = 2, is five-fold degenerate.

" Substituting L = 2 into the equations for the operations of Oh gives
the following representation.

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3Fh 6Fd

'D 5 -1 1 -1 1 5 -1 -1 1 1

" This is identical to the reducible representation we obtained for d
orbitals.

L  In Oh, D 6666 Eg + T2g

" The five-fold degeneracy of the D free-ion term is lifted to become a
doubly degenerate term and a triply degenerate term because of the
restrictions on maximum degeneracy in Oh.



Splitting of dn Free-ion Terms S, P, D, and F in Oh

! F state, for which L = 3, is seven-fold degenerate.

" Substituting L = 3 into the equations for the operations of Oh gives
the following representation.

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3Fh 6Fd

'F 7 1 -1 -1 -1 7 -1 1 -1 -1

" This reduces as 'F = A2g + T1g + T2g.

L  In Oh, F 6666 A2g + T1g + T2g



Splitting of Higher Terms

! The splitting of other states (G, H, I, etc.) can be determined in similar
manner, giving the following results:

Free-ion

Term Terms in Oh

S A1g

P T1g

D Eg + T2g

F A2g + T1g + T2g

G A1g + Eg + T1g + T2g

H Eg + 2T1g + T2g

I A1g + A2g + Eg + T1g + 2T2g

 



Example: Splitting of d 2 Free-Ion Terms in Oh

! The free-ion terms for the configuration nd2, in order of increasing
energy are

3F < 1D < 3P < 1G < 1S

" Each of these terms will split into the ligand filed terms we have just
identified.

Free-ion terms 3F 1D 3P 1G 1S

Octahedral terms3A2g
1Eg

3T1g
1A1g

1A1g

3T1g
1T2g

1Eg

3T2g
1T1g

1T2g

Microstates 21 5 9 9 1

Dt = 21 + 5 + 9 + 9 + 1 = 45



Ligand-Field Terms in Other Fields

! The splittings of free-ion terms and the Mulliken symbols for the
ligand-field terms in other point groups can be obtained in similar
manner by making them bases for representations in the appropriate
point group.

" It is usually more efficient to use the correlation tables

" For example, inspection of the correlation table for Oh and Td shows
that the splittings are identical in both groups, except for the
omission of the subscript g for the tetrahedral states.

" Correlations with other groups (e.g., D4h, D3, D2d) are not as trivial,
but are equally straightforward.



Correlation Diagrams for Ligand Field Splitting

L What is the energy order of the ligand field terms?

L How will the energies of the terms change with changing )o?

! Group theory alone, cannot provide quantitative answers.

! It is possible to address the problem at least qualitatively with a
correlation diagram, which shows how the energies of terms change as
a function of the ligand field strength, measured as )o.  

! To construct the correlation diagram, we look at two extremes: 

" Left side: A weak field, just strong enough to lift the R3 free-ion term
degeneracies.  

• On the left side of the diagram we show the energies of the free-ion
terms and the Mulliken symbols for the terms into which they are
split in a weak octahedral field.  

" Right side: A hypothetical extremely strong field.  

• At the limit of an extremely large )o separation between t2g and eg

orbitals, we assume that interactions between electrons in separate
orbitals are negligible.

• At this limit we can assess the energy order of  the possible
electronic configurations for the ground state and all excited states.

• We can then identify the terms that will emerge from each of these
configurations in a slightly less strong field, where electronic
interactions begin to be felt.
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Constructing A Correlation Diagram for d 2

L The job of constructing the diagram amounts to
determining the correlations between terms in the weak
field and the terms in the strong field.

! General Approach - The Method of Descending Symmetry
(Bethe).

" Rigorous, generally applicable, but tedious.

! The Noncrossing Rule is observed:  Correlation lines for
states of the same symmetry and same multiplicity do not
cross, but rather repel one another, thereby increasing their
relative energy separation beyond a certain minimum as field
strength increases.


