Need for More Sophisticated Theories

- Quantitative predictions of CFT are based on a purely electrostatic model.
 - They require empirical corrections in order to give satisfactory agreement with experimental results (e.g., electronic spectra).
 - Empirically corrected CFT is known as modified crystal field theory, or more commonly ligand field theory (LFT).

- The need for corrections to CFT arises from metal-ligand orbital overlap.
 - This implies a certain amount of covalence in the M-L interactions.
 - There is less repulsion between \(d \) electrons in a complex ion than in the free gaseous ion.
 - Covalent interaction with ligands allows metal electrons to be delocalized onto the ligands, lessening repulsions.
 - In effect, taking a CFT view, the \(d \) orbitals have been “expanded” by the presence of the ligands.
The Nephelauxetic Effect

- The disparity between free-ion and complex-ion electronic state energies is the so-called *nephelauxetic effect* (Gk., *nephelē* = cloud + *auxēsis* = growth; hence, “cloud-expanding”), which depends upon both the metal ion and ligand.

 - For a given metal ion, the ability of ligands to induce this cloud expanding increases according to a *nephelauxetic series*:

 \[
 F^- < H_2O < NH_3 < en < ox < SCN^- < Cl^- < CN^- < Br^- < I^- \]

 - Note that the ordering of ligands in the nephelauxetic series is not the same as the spectrochemical series.

- By using empirically determined constants for both ligands and the central metal ion it is possible to reconcile the ligand field model of a complex with quantitative spectroscopic results.

 - The need to modify CFT to account for the nephelauxetic effect suggests that a molecular orbital approach might be useful.

 - An MO model could be adjusted for various degrees of M-L orbital overlap, representing a range from polar covalent bonding to nearly ionic interactions.

 - An MO approach might allow us to understand the relationship between orbital overlap and the energy separations among *d* orbitals in fields of various geometries.
Sigma-only MOs for ML₆ (O₉)

Pendant Atom SALCs:

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>8C³</th>
<th>6C²</th>
<th>6C⁴</th>
<th>3C₂</th>
<th>i</th>
<th>6S⁴</th>
<th>8S₃</th>
<th>3σₙ</th>
<th>6σ₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γₜ</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Γₜ = A₁g + E₉ + T₁u

Thus, we can define six SALCs with three different symmetries, which can form bonding and antibonding combinations with like symmetry AOs on the central metal ion.

AOs on M:

\[s = a_{1g}, \quad (pₓ, pᵧ, pᶻ) = t_{1u}, \quad (dₓ²₋ᵧ², dᶻ²) = e₉, \quad (dₓᵧ, dₓz, dᵧz) = t₂g \]

😊 The symmetries of the d orbitals are, of course, the same as noted in our considerations of CFT.

- \[s, pₓ, pᵧ, pᶻ, dₓ²₋ᵧ², dᶻ² \] orbitals have the proper symmetries to form bonding and antibonding combinations with matching symmetry SALCs.

- The three \(t₂g \) orbitals \((dₓᵧ, dₓz, dᵧz) \) have no matching SALCs and must remain nonbonding. This is a consequence of the orientation of these orbitals relative to the ligands.
SALC Equations

\[a_{1g} \]
\[\Sigma_a = \frac{1}{\sqrt{6}} (\sigma_x + \sigma_{-x} + \sigma_y + \sigma_{-y} + \sigma_z + \sigma_{-z}) \]

\[e_g \]
\[\Sigma_{z^2} = \frac{1}{2\sqrt{3}} (2\sigma_z + 2\sigma_{-z} - \sigma_x - \sigma_{-x} - \sigma_y - \sigma_{-y}) \]
\[\Sigma_{x^2-y^2} = \frac{1}{2} (\sigma_x + \sigma_{-x} - \sigma_y - \sigma_{-y}) \]

\[t_{2g} \]
\[\Sigma_z = \frac{1}{\sqrt{2}} (\sigma_z - \sigma_{-z}) \]
\[\Sigma_x = \frac{1}{\sqrt{2}} (\sigma_x - \sigma_{-x}) \]
\[\Sigma_y = \frac{1}{\sqrt{2}} (\sigma_y - \sigma_{-y}) \]
ML$_6$ Sigma-Only MO Scheme

\[p \, (t_{1u}) \]
\[s \, (a_{1g}) \]
\[d \, (e_g + t_{2g}) \]
\[t_{1u}^* \]
\[a_{1g}^* \]
\[e_g^* \]
\[e_g \]
\[t_{2g} \]
\[\Delta_0 \]
\[(a_{1g} + e_g + t_{1u}) \]

SALCs
The twelve electrons provided by the ligands alone fill the lowest three levels of MOs (a_{1g}, t_{1u}, and e_g).

Any electrons provided by the metal ion will result in an equivalent filling of the t_{2g} level and if necessary the e_g level.

Electron filling above the six MOs in the lowest three levels is identical to the presumed filling of d orbitals in the CFT model.

As with the CFT model, both high and low spin ground states are possible for d^4 through d^7 metal ion configurations.

In the MO scheme Δ_0 or $10Dq$ is defined as the energy separation between the t_{2g} and e_g^* levels.

The lower t_{2g} orbitals are nonbonding and can be taken as essentially the d_{xy}, d_{xz}, and d_{yz} orbitals of the metal ion, which is not materially different from the CFT view.

The upper e_g^* orbitals are now seen as antibonding molecular orbitals.

Although antibonding, the e_g^* MOs when occupied involve sharing of electron density between the metal ion and the ligands.
Adjustments for Covalence

- We can make allowances for varying degrees of covalent interaction between the metal ion and ligands by adjusting the MO scheme.
 - No adjustment of the scheme can change the localized character of the t_{2g} orbitals.
- Electrons occupying the e_g^* MO will have more or less delocalization onto the ligands depending upon the relative energies of the metal ion d orbitals and the ligand $sigma$ orbitals.
 - If metal d orbitals lie higher in energy than ligand $sigma$ orbitals, the e_g^* MOs will lie closer to the metal d orbitals and will have more metal ion character than ligand character.

In this case, e_g^* electron density will be more localized on the metal.

If the disparity in levels is extreme, this becomes an ionic model in which the e_g^* MOs are essentially metal d orbitals, like the CFT approach.

Thus, the CFT model is a special case in the MO approach.
Adjustments for Covalence

- As the energies of the metal ion d orbitals and the ligand σ orbitals become more comparable, the degree of electron sharing (covalence) will become greater.
 - More of the e_g* electron density will be delocalized toward the ligands.
Adjustments for Covalence

- If the ligand \(\sigma \) orbitals were to lie significantly higher than the metal ion \(d \) orbitals, \(e_g^* \) electron density would be predominantly localized on the ligands.
MO Interpretation of Nephelauxetic Effect
Sigma-Only Case

\[F^- < H_2O < NH_3 < en < ox < SCN^- < Cl^- < CN^- < Br^- < I^- \]

- The weakest ligands in the nephelauxetic series (F\(^-\), H\(_2\)O, and NH\(_3\)) have low energy atomic or molecular orbitals relative to transition metal ion \(d\) orbitals.
 - This is more in keeping with the "quasi-ionic" model:

```
M       L
```

```
\( e_g^* \)
```

\(d \)

\(\sigma \)

\(e_g \)

- For complexes with these ligands, both \(t_{2g}\) and \(e_g^*\) electron density is essentially localized in metal \(d\) orbitals, not unlike the assumptions of the CFT model.
CFT vs. MO - Sigma Only Case

- MO is capable of better quantitative agreement without fundamentally changing the model.

- Electron filling in the MO model in the highest occupied MOs is the same as in the CFT model:
 - Orbital symmetries are the same.
 - Orbital ordering is the same.
 - Electron filling is the same.
 - Δ_o is defined as the gap between the same symmetry orbital levels.

💡 For qualitative purposes (electronic configurations, magnetic properties, qualitative visible spectra interpretation) CFT is equivalent to MO and is easier to apply.

😊 The qualitative agreement between CFT and MO is general.
ML₆ Complexes with Pi Bonding

To include \(pi\) bonding in our MO scheme for octahedral ML₆ complexes we use the following twelve vectors as a basis for a representation of SALCs.

- These vectors might indicate
 - Occupied \(p\) orbitals (other than those engaged in \(sigma\) bonding), such as the \(np_x\) and \(np_y\) orbitals on halide ligands in complexes like \(\text{CrX}_6^{3-}\) (\(X = \text{F}^-, \text{Cl}^-\)).
 - These are classified as \textit{donor ligands}, because they have electrons to contribute to the \(pi\) system of the complex.
 - Other unoccupied \(pi\) symmetry AOs or MOs on the ligands, such the empty \(\pi^*\) antibonding MOs of CO and \(\text{CN}^-\) in complexes like \(\text{Cr(CO)}_6\) and \([\text{Fe(CN)}_6]^{4-}\).
 - These are classified as \textit{acceptor ligands}, since they receive electron density from the \(pi\) system.
Representation for Pi-SALCs

\[
\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}
\]

<table>
<thead>
<tr>
<th>O_h</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{π}</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Matching Γ_π with Metal AOs

$$\Gamma_\pi = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

T_{2g}: Can form pi-bonding and antibonding combinations between the t_{2g} orbitals (d_{xy}, d_{xz}, d_{yz}) and T_{2g} π-SALCs.
○ This will change the character of the t_{2g} level, which we previously had identified as nonbonding in the $sigma$-only MO scheme.

T_{1u}: Can form pi-bonding and antibonding combinations between the three np orbitals (t_{1u}) and the three T_{1u} SALCs.
○ However, we have already used these metal ion np AOs to form bonding and antibonding σ-MOs with the T_{1u} σ-SALCs.
○ The $sigma$ interactions are likely to result in more effective overlaps

Assume that the np orbitals have only minimally effective interactions with the T_{1u} π-SALCs; i.e. virtually nonbonding or only weakly bonding in certain complexes.

T_{1g} and T_{2u}: No AO matches, so strictly nonbonding.
T_{2g} SALCs and Their Pi-Bonding LCAOs

\[\Pi_{xz} = \frac{1}{2}(\pi_1 + \pi_2 + \pi_3 + \pi_4) \]
\[\Pi_{yz} = \frac{1}{2}(\pi_5 + \pi_6 + \pi_7 + \pi_8) \]
\[\Pi_{xy} = \frac{1}{2}(\pi_9 + \pi_{10} + \pi_{11} + \pi_{12}) \]

\[d_{xz} + \Pi_{xz} \]

Similar matches with the other two SALCs.
Virtually Nonbonding T_{1u} SALCs

\[\Pi_z = \frac{1}{2}(\pi_1 - \pi_3 + \pi_5 - \pi_7) \]
\[\Pi_x = \frac{1}{2}(\pi_2 - \pi_4 + \pi_{10} - \pi_{12}) \]
\[\Pi_y = \frac{1}{2}(\pi_6 - \pi_8 + \pi_9 - \pi_{11}) \]

\[p_z + \Pi_z \]

Similar matches with the other two SALCs.
Strictly Nonbonding T_{1g} and T_{2u} SALCs

$T_{1g} (xz)$

Similar form for the other two SALCs.

$T_{2u} (z)$

Similar form for the other two SALCs.
Impediments to Forming a General MO Scheme

- The energy ordering and the nature of the MOs will be affected by the following factors:
 - Identity of the central metal ion
 - Identity of the ligands
 - Relative energies of the orbitals on metal and ligands
 - The nature and effectiveness of the σ and π orbital interactions
 - Electron filling in ligand orbitals

.Reverse Smiley It is not possible to construct a detailed MO scheme that will have general applicability to a range of octahedral complexes.

луш The best we can hope for is a simplified scheme that identifies interacting orbitals by symmetry type, approximates their bonding type, and arranges MOs of the same type in a plausible relative energy order.

- The simplified scheme makes no attempt to distinguish between the energies of same-type orbitals with different symmetries.
Simplified General MO Scheme for ML₆

- σ* antibonding
- t₁ᵤ
- np
- t₁ᵤ
- ns
- a₁g
- e₉
- Δ₀
- π* antibonding
- t₂g
- (n - 1)d
- e₉ + t₂g
- π₀ nonbonding
- t₁g + t₂u
- π nonbonding or weakly bonding
- t₁u
- π bonding
- t₂g
- σ bonding
- a₁g + e₉ + t₁u
- σ-SALCs
- a₁g + e₉ + t₁u
- π-SALCs
- t₁g + t₂g + t₁u + t₂u
- ML₆ - SALCs
Example: CrF$_6^{3-}$

- Cr$^{3+}$ ion has a d^3 configuration, and therefore supplies three electrons.

- Assuming that the 2s electrons are nonbonding, each F$^-$ ion supplies six electrons, making a total of 36 electrons from ligands.

 Thus, we should fill our scheme with 39 electrons.

- Thirty-six electrons are sufficient to fill all levels through the nonbonding t_{1g} and t_{2u} MOs.

- The remaining three electrons occupy individual t_{2g} π^* MOs, resulting in a configuration $(t_{2g}^*)^3$, equivalent to the CFT model’s configuration t_{2g}^3.

- Δ_o is defined as the energy gap between the pi antibonding t_{2g}^* level and the $sigma$ antibonding e_g^* level.

- The energies of the t_{2g}^* and e_g^* levels will be sensitive to differences in the effectiveness of metal-ligand pi and $sigma$ interactions, respectively.
 - The interplay between $sigma$ and pi bonding strength affects the magnitude of Δ_o.
 - The relative abilities of a ligand to engage in $sigma$ and pi bonding help determine its position in the spectrochemical series.
Sigma and Pi Bonding in T_d ML$_4$ Complexes

Assumptions:

- Each of the ligands possesses one or more sigma orbitals directed at the central metal ion and pairs of pi orbitals perpendicular to the M-L bond axis.

- Ligands are monatomic ions, such as halide ions, which could use ns and np$_z$ orbitals for sigma interactions and np$_x$ and np$_y$ orbitals for pi interactions with the metal ion (n - 1)d, ns, and np orbitals.
 - For simplicity, assume that ligand ns orbitals are essentially nonbonding.
 - Assume only np orbitals have significant overlap with the metal ion orbitals.

Symmetry of M AOs:

- $s = a_1$
- $p_x, p_y, p_z = t_2$
- $d_{x^2-y^2}, d_{z^2} = e$
- $d_{xy}, d_{xz}, d_{yz} = t_2$

⚠️ Once again, the symmetries of the d orbitals are the same as we noted in the CFT approach.
Sigma SALC Representation and MOs

- Same as sigma SALCs of hydrogens in methane.
 \[\Gamma_\sigma = A_1 + T_2 \]

- The \(A_1 \) \(\sigma \)-SALC has appropriate symmetry to form \textit{sigma} combinations with metal \(ns \) orbitals, although the effectiveness of the overlap may be limited.

- The \(T_2 \) \(\sigma \)-SALCs have appropriate symmetry to form \textit{sigma} combinations with \(np_z \), \(np_y \), and \(np_x \) orbitals on the metal ion.
 - However, the \(d_{xz} \), \(d_{yz} \), and \(d_{xy} \) orbitals also have \(T_2 \) symmetry and can likewise form combinations with these SALCs.
 - There may be some degree of \(d-p \) mixing in the \(t_2 \) \(\sigma \)-MOs.

- In constructing our MO scheme we will assume, for simplicity, that the \(t_2 \) \(\sigma \)-MOs are formed principally with the metal \(np \) orbitals, although \(d-p \) mixing may be appreciable in specific complexes.
Only the operations $E, 8C_3 (= 4C_3 + 4C_3^2)$ do not move the eight vectors off their positions. All other characters are 0 in Γ_π.

The character for each pair of vectors perpendicular to a three-fold axis is given by the operator matrix in the expression

$$\begin{bmatrix}
-1/2 & -\sqrt{3}/2 \\
\sqrt{3}/2 & -1/2
\end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\chi(C_3) = -1$$
Pi SALCs and MOs

\[
\begin{array}{c|cccc}
T_d & E & 8C_3 & 3C_2 & 6S_4 & 6\sigma_d \\
\hline
\Gamma_\pi & 8 & -1 & 0 & 0 & 0
\end{array}
\]

\[\Gamma_\pi = E + T_1 + T_2\]

- The \(T_1 \) SALCs have no match in metal atom AOs and will be nonbonding.
- The \(E \) SALCs will form \(\pi \) combinations with the \(d_{x^2-y^2} \) and \(d_{z^2} \) orbitals on the metal atom.
- The \(T_2 \pi \)-SALCs, like the \(T_2 \sigma \)-SALCs, can potentially form combinations with both \(t_2 (n - 1)d \) and \(np \) orbitals on the metal atom, so the MOs that are formed may involve some degree of \(d-p \) mixing.
- We have assumed that the \(t_2 \sigma \)-MOs mainly use the \(np \) orbitals.
 - We will assume that the \(t_2 \pi \)-MOs are formed principally with the metal \((n - 1)d\) orbitals; i.e., \(d_{xy}, d_{xz}, d_{yz} \).
- The distinction between \(t_2 \sigma \)-MOs and \(t_2 \pi \)-MOs is not as clean as we might like.
 - None of the metal \(t_{2g} \) orbitals is directed at ligands (the ideal orientation in \(\sigma \) bonding).
 - None of the metal \(t_{2g} \) orbitals is oriented at right angles to the bond axis (the ideal orientation in \(\pi \) bonding).
 - Therefore, each type of MO has some of the character of the other type in this case.
 - For simplicity, we will assume that the bonding \(t_{2g} \) MOs are either essentially \(\sigma \) or \(\pi \), and that the mixing is more pronounced in the antibonding MOs.
Simplified Qualitative MO Scheme for ML₄ (T₅)

- σ*, π* antibonding
- np
- t₂
- ns
- a₁
- (n - 1)d
- e + t₂
- π₀ nonbonding
- t₁
- π bonding
- e
- π bonding
- t₂
- σ bonding
- a₁ + t₂
- Δ₁
- e + t₁ + t₂
- π-SALCs
- e + t₁ + t₂
- σ-SALCs
- a₁ + t₂
- σ bonding
- a₁ + t₂
- e + t₂
- σ* antibonding
- n₁
- t₂
- π* antibonding
- e
Equivalence of CFT and MO Models of ML$_4$ (T_d)

Example: NiCl$_4^{2-}$

- The four Cl$^-$ ligands supply six electrons each, for a total of 24.
- Ni$^{2+}$ is a d^8 ion, so the total number of electrons is 32.
- Twenty-four electrons will fill all lower levels through the t_1 nonbonding level in our scheme.
- The remaining eight electrons will fill the antibonding e and t_2 levels, giving a configuration $(e^*)^4(t_2^*)^4$.
 - The two unpaired electrons in the upper t_2^* orbitals make the complex paramagnetic.
 - This is equivalent to the CFT configuration $e^4t_2^4$.
- Like the CFT model, Δ_t is defined in the MO model as the energy separation between the antibonding e^* and t_2^* MOs.

Like the octahedral case, the essential parameters of the CFT model are similarly defined in the MO model.