Formulating SALCs with Projection Operators

- \triangleright The mathematical form of a SALC for a particular symmetry species cannot always be deduced by inspection (e.g., e_{1g} and e_{2u} pi-MOs of benzene).
- U A *projection operator* is a function that acts on one wave function of the basis set of functions that comprise the SALCs (e.g., one of the $\sin p_z$ orbitals on the carbon atoms in the ring of benzene) to "project out" the SALC function.
- $\boldsymbol{\checkmark}$ A projection operator for each symmetry species must be applied to the reference function to generate all the symmetry-allowed SALCs.
- \triangleright The projection operator for a given symmetry species contains terms for each and every operation of the group (not just each class of operations).

Full-Matrix vs. Character Form of the Projection Operator

- \triangleright The full form of the projection operator function for degenerate species, which often directly generates the set of all SALCs belonging to a degenerate symmetry species, requires use of the full operator matrix for each and every operation of the irreducible representation; i.e., the full-matrix form of the irreducible representation.
- \triangleright Because there are no generally available tabulations of the full-matrix forms of the irreducible representations for groups with degenerate species, a simpler form of the projection operator that uses only the characters for each operation is most often used.
- \odot The character form of the projection operator for degenerate species generates only one of the degenerate SALCs, requiring other means to deduce the companion functions.
- **Example 18 We will only use the character form of the projection operator** function.

The Projection Operator in Characters

 \blacktriangleright The projection operator in character form, P_i , acting on a reference function of the basis set, φ_t , generates the SALC, S_i , for the *i*th allowed symmetry species as

$$
S_i \propto P_i \varphi_t = \frac{d_i}{h} \sum_R \chi_i^R R_j \varphi_t
$$

in which

 d_i = dimension of the *i*th irreducible representation, $h =$ order of the group, χ_i^R = each operation's character in the *i*th irreducible representation,

 R_j = the operator for the *j*th operation of the group.

- $\mathbf{\nabla}$ The term $R_j \varphi_t$ gives one of the several basis functions of the set of functions forming the SALCs, in a positive or negative sense.
- U The summation is taken over *all operations* of the group, not all classes of operations.
- \blacktriangleright The results $P_i \varphi_t$ are not the final SALCs; they need "cleaning up".

Requirements for a Wave Function

1. The function must be normalized.

 N^2 ∫ΨΨ* $dτ = 1$,

where *N* is the normalization constant.

 \mathbb{R} We can routinely ignore the factor d_i/h in the projection operator expression.

2. All wave functions must be orthogonal.

$$
\int \Psi_i \Psi_j d\tau = 0 \text{ if } i \neq j
$$

Mathematical Simplification When Taking Products of LCAOs

 \blacktriangleright The $P_i \varphi_t$ products have the general form

$$
(a_i \varphi_i \pm a_{i+1} \varphi_{i+1} \dots \pm a_n \varphi_n)(b_j \varphi_j \pm b_{j+1} \varphi_{j+1} \dots \pm b_m \varphi_m)
$$

 \vee But in general

$$
\int \varphi_i \varphi_j d\tau = \delta_{ij}
$$

Thus, all $\varphi_i \varphi_j$ (*i* $\neq j$) terms vanish, and all $\varphi_i \varphi_i$ or $\varphi_j \varphi_j$ terms (*i* = *j*) are unity.

 \mathbb{R} Ignore the cross terms when normalizing or testing for orthogonality!

Example: Generate the SALCs for sigma-bonding of six ligands to a central atom in an octahedral MX_6 complex.

 \checkmark From the transformation of six octahedrally arranged vectors pointing toward a central atom, the reducible representation for the six SALCs can be generated and reduced as follows:

$$
\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}
$$

Minimizing the Work

- \boldsymbol{V} O_h has 48 operations, so each projection operator will have 48 terms.
- \blacktriangleright The rotational subgroup *O* has half as many operations ($h = 24$) but still preserves the essential symmetry.
- \mathbb{R}^n Carry out the work in *O* and correlate the results to O_h .
- \blacktriangleright In *O*, $\Gamma_{\sigma} = A_1 + E + T_1$, which has obvious correlations to $\Gamma_{\sigma} = A_{1g} + E_g$ + T_{1u} in O_h .

Labeling the Symmetry Elements

 $✓$ 8 C_3 in O refers to 4 C_3 and 4 C_3 ² whose axes run along the cube diagonals.

> **Example 13** Label these by the corners through which they pass: e.g., *aa*, *bb*, *cc*, *dd*.

 \checkmark 3C₂, 3C₄, and 3C₄³ have axes that run through *trans*-related pairs of ligands.

> **Example 12** Label these by the pairs of ligands through which they pass; e.g., *12*, *34*, *56*.

- \checkmark 6 C_2 ' have axes that pass through the mid-points of opposite cube edges.
	- E Label these by the two-letter designation of the cube edges through which they pass; e.g., *ac*, *bd*, *ab*, *cd*, *ad*, *bc*.
- \mathcal{C}_3 rotations are clockwise, viewed from the upper cube corner through which the axis passes.
- $\mathcal C_4$ rotations are clockwise, viewed from the lower-numbered ligand.

The Effect of the Operations of O on a Reference Function σ_1

Projection Operator for the A_1 Species in O (A_{1g} in O_h)

\overline{O}	E								C_3 C_2 C_3 C_3			
label		aa	bb	cc	dd aa		bb	cc	dd	12	34	56
$R_i \sigma_1 \mid \sigma_1$		σ_5	σ_3	σ_{6}	σ_4	σ_3	σ_{6}	σ ₄	σ_{5}	σ_1	σ_2	σ_{2}
A_{1}							$\begin{array}{ccccccccccccc}\n1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\n\end{array}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
$\chi_i^R R_i \sigma_1$ σ_1 σ_5 σ_3 σ_6 σ_4 σ_3 σ_6 σ_4 σ_5 σ_6 σ_7 σ_8 σ_7 σ_8 σ_8 σ_9 σ_1 σ_2 σ_3 σ_6 σ_7 σ_8 σ_9									σ_{5}	σ_1	σ_2 σ_2	
									C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_2 C_2 C_2 C_2 C_2 C_2			C_{2} '
		$12 \quad 34$	56	12	34	56	ac	bd	ab		cd ad	bc
	σ_1	σ_{5}	σ_4	σ_1	σ_{6}	σ_3	σ_2	σ_2	σ_3	σ_4	σ_{5}	σ_{6}
	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf 1$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1
	σ_{1}	σ_{5}	σ_4		σ_1 σ_6	σ_3	σ_2	σ_2	σ_3	σ_4	σ_5	σ_{6}

Summing all the $\chi_i^R R_j \sigma_1$ terms gives

$$
P(A_1)\sigma_1 \propto 4\sigma_1 + 4\sigma_2 + 4\sigma_3 + 4\sigma_4 + 4\sigma_5 + 4\sigma_6
$$

$$
\propto \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6
$$

SALC for A_{1g}

Normalizing:

$$
N^{2} \int (\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6})^{2} d\tau
$$

= $N^{2} \int (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + \sigma_{5}^{2} + \sigma_{6}^{2}) d\tau$
= $N^{2} (1 + 1 + 1 + 1 + 1 + 1) = 6N^{2} \equiv 1$
 $\Rightarrow N = 1/\sqrt{6}$

Therefore, the normalized *A*¹*^g* SALC is

$$
\Sigma_1(A_{1g}) = 1/\sqrt{6(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)}
$$

Projection Operator for the First of Two E SALCs $(E_u \text{ in } O_h)$

 \blacktriangleright In *O*, χ_R = 0 for 6*C*₄ and 6*C*₂[']. Therefore, ignore the last 12 terms.

Summing across all $\chi_i^R R_j \sigma_1$ gives

$$
P(E)\sigma_1 \propto 4\sigma_1 + 4\sigma_2 - 2\sigma_3 - 2\sigma_4 - 2\sigma_5 - 2\sigma_6
$$

$$
\propto 2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6
$$

Normalizing:

$$
N^{2} \int (2\sigma_{1} + 2\sigma_{2} - \sigma_{3} - \sigma_{4} - \sigma_{5} - \sigma_{6})^{2} d\tau
$$

= $N^{2} \int (4\sigma_{1}^{2} + 4\sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + \sigma_{5}^{2} + \sigma_{6}^{2}) d\tau$
= $N^{2} (4 + 4 + 1 + 1 + 1 + 1) = 12N^{2} \equiv 1$
 $\Rightarrow N = 1/\sqrt{12} = 1/(2\sqrt{3})$

After normalization:

$$
\Sigma_2(E) = 1/(2\sqrt{3})(2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)
$$

Test of Orthogonality with $\Sigma_1(A_1)$

 $\int [\Sigma_1(A)][\Sigma_2(E)]d\tau =$

 \int (σ₁ + σ₂ + σ₃ + σ₄ + σ₅ + σ₆)(2σ₁ + 2σ₂ – σ₃ – σ₄ – σ₅ – σ₆)dτ

 $= 2 + 2 - 1 - 1 - 1 - 1 = 0$

Example 13 Eut $\Sigma_2(E)$ is only the first of two degenerate functions.

 \odot How do we find the partner?

Finding the Partner to $\Sigma_2(E)$ **- Method I**

Method I: Apply the *E* Projection operator to another reference function, here σ_3 .

This gives

$$
P(E) \sigma_3 \propto -2\sigma_1 - 2\sigma_2 + 4\sigma_3 + 4\sigma_4 - 2\sigma_5 - 2\sigma_6
$$

$$
\propto -\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6
$$

Orthogonal to
$$
\Sigma_1(A)
$$
?
\n
$$
\int (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)(-\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6) d\tau
$$
\n
$$
= -1 - 1 + 2 + 2 - 1 - 1 = 0
$$
\n
$$
\Rightarrow \text{Yes}
$$

Orthogonal to
$$
\Sigma_2(E)
$$
?
\n
$$
\int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(-\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6) d\tau
$$
\n
$$
= -2 - 2 - 2 - 2 + 1 + 1 = -6 \neq 0
$$
\n
$$
\Rightarrow \text{No!}
$$

 \odot What went wrong?

Notes on Method I for Finding a Degenerate Partner

- $E \cong$ Changing the reference function after finding the first member of a degenerate set implicitly changes the axis orientation. The resulting function will be one of the following:
	- A legitimate partner wave function in either its positive or negative form. [Not this time!]
	- The negative of the first member of the degenerate set. [Not a useful result, and not what happened this time.]
	- A linear combination of the first member with its partner(s). If this is the case, try various combinations of the two projected functions to find a function that is orthogonal. [Looks like this must be what we got!]

Finding the Partner to $\Sigma_2(E)$ **- Method I**

By trial and error with various combinations we find that this works:

$$
P(E)\sigma_1 = 2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6
$$

$$
2P(E)\sigma_3 = -2\sigma_1 - 2\sigma_2 + 4\sigma_3 + 4\sigma_4 - 2\sigma_5 - 2\sigma_6
$$

$$
3\sigma_3 + 3\sigma_4 - 3\sigma_5 - 3\sigma_6
$$

$$
\propto \sigma_3 + \sigma_4 - \sigma_5 - \sigma_6
$$

This result is orthogonal to $\Sigma_2(E)$,

$$
\int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6) d\tau
$$

= 0 + 0 - 1 - 1 + 1 + 1 = 0

and also to $\Sigma_1(A_1)$,

$$
\int (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6) d\tau
$$

= 0 + 0 + 1 + 1 - 1 - 1 = 0

The normalized partner wave function, then, is

$$
\Sigma_3(E) = \frac{1}{2}(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)
$$

Finding the Partner to $\Sigma_2(E)$ **- Method II**

Method II: Apply an operation of the group to the first function found.

- Principle: The effect of any group operation on a wave function of a degenerate set is to transform the function into the positive or negative of itself, a partner, or a linear combination of itself and its partner or partners.
- Exactle Suppose we perform $C_3(aa)$ on our first degenerate function.
- Effect of $C_3(aa)$ on the functions of the basis set:

 \mathcal{L} Effect of $C_3(aa)$ on $\Sigma_2(E)$:

$$
(2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6) \rightarrow (2\sigma_5 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_3 - \sigma_4)
$$

$$
= (-\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 + 2\sigma_5 + 2\sigma_6)
$$

Is this new function orthogonal to $\Sigma_2(E)$?

$$
\begin{aligned} \int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(-\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 + 2\sigma_5 + 2\sigma_6) d\tau \\ &= -2 - 2 - 1 - 1 - 2 - 2 = -10 \neq 0 \\ &\Rightarrow \text{No!} \end{aligned}
$$

Finding the Partner to $\Sigma_2(E)$ **- Method II**

The new function must be a combination of $\Sigma_2(E)$ and the partner function.

By trial-and-error:

$$
- \Sigma_2: \qquad -2\sigma_1 - 2\sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6
$$

-2{ $\Sigma_2 \times R[C_3(aa)]$ }
+2\sigma_1 + 2\sigma_2 + 2\sigma_3 + 2\sigma_4 - 4\sigma_5 - 4\sigma_6
+3\sigma_3 + 3\sigma_4 - 3\sigma_5 - 3\sigma_6
 $\propto \sigma_3 + \sigma_4 - \sigma_5 - \sigma_6$

This is the same result as found by Method I:

$$
\Sigma_3(E) = \frac{1}{2}(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)
$$

Note: In T_1 of the group O, for $8C_3 \chi = 0$; therefore, skip the first eight terms in the operator expression.

\overline{O}	E_{\rm}	C_3	C_3	C_3		C_3 C_3^2 C_3^2		C_3^2	C_3^2	C ₂	C ₂	C ₂
label		aa	bb	$\mathcal{C}\mathcal{C}$	dd	aa	bb	$\mathcal{C}\mathcal{C}$	dd	12	34	56
$R_i \sigma_1$	σ_1	σ_{5}	σ_3	σ_{6}	σ_4	σ_3	σ_{6}	σ_4	σ_{5}	σ_1	σ_2	σ_2
T_{1}	\mathfrak{Z}	$\overline{0}$	$\overline{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\overline{0}$	$\boldsymbol{0}$	-1	-1	-1
$\chi_i^R R_j \sigma_1$ 3 σ_1										$-\sigma_1$	$-\sigma_2$	$-\sigma_2$
	C_4	C_4	C_4	C_4^3	C_4^3	$C_4^{\;3}$	C_2 '	C_2^{\prime}	C_2'	C_2'	C_2'	C_2'
	12	34	56	12	34	56	ac	bd	ab	c d	ad	bc
	σ_1	σ_{5}	σ_4	σ_1	σ_6	σ_3	σ_2	σ_2	σ_3	σ_4	σ_{5}	σ_6
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-1	-1	-1	-1	-1	-1
	σ_1	σ_{5}	σ_4	σ_1	σ_{6}	σ_3	$-\sigma_2$	$-\sigma_2$	$-\sigma_3$	$-\sigma_4$	$-\sigma_5$	$-\sigma_6$

Summing across the $\chi_i^R R_j \sigma_1$: $P(T_1) \sigma_1 \propto 4 \sigma_1 - 4 \sigma_2 \propto \sigma_1 - \sigma_2$

We can readily show that this is orthogonal to the previous three functions for *A* and *E*, and on normalization we obtain the SALC

 $\Sigma_4(T_1) = 1/\sqrt{2} (\sigma_1 - \sigma_2)$

The partner functions become apparent from considering the form of $\Sigma_4(T_1)$.

Example 15 The other two functions must have the same form along the other two orthogonal axes:

$$
\Sigma_5(T_1) = 1/\sqrt{2} (\sigma_3 - \sigma_4)
$$

$$
\Sigma_6(T_1) = 1/\sqrt{2} (\sigma_5 - \sigma_6)
$$

 \blacktriangleright Alternately, note the effects of *C*₃(*aa*) and *C*₃²(*aa*) on (σ₁ − σ₂):

$$
R[C_3(aa)] \times (\sigma_1 - \sigma_2) = (\sigma_5 - \sigma_6) \Rightarrow \Sigma_6(T_1)
$$

$$
R[C_3^2(aa)] \times (\sigma_1 - \sigma_2) = (\sigma_3 - \sigma_4) \Rightarrow \Sigma_5(T_1)
$$

Summary: The Six σ-SALCs of MX_6 **(** O_h **)**

$$
\Sigma_1(A_{1g}) = 1/\sqrt{6(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)}
$$

\n
$$
\Sigma_2(E_u) = 1/(2\sqrt{3})(2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)
$$

\n
$$
\Sigma_3(E_u) = \frac{1}{2}(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)
$$

$$
\Sigma_4(T_{1g}) = 1/\sqrt{2} (\sigma_1 - \sigma_2)
$$

\n
$$
\Sigma_5(T_{1g}) = 1/\sqrt{2} (\sigma_3 - \sigma_4)
$$

\n
$$
\Sigma_6(T_{1g}) = 1/\sqrt{2} (\sigma_5 - \sigma_6)
$$

 $\Gamma = A_1 + T_2$

- \blacktriangleright The A_1 SALC is obvious, so only use the projection operator for the T_2 SALCs.
- \blacktriangleright The group T_d has $h = 24$, but its rotational subgroup *T* has $h = 12$. Therefore, do the work in T , where the T species corresponds to T_2 of *Td* .
- \triangleright For the irreducible representation *T*, the only non-zero characters are *E*, $C_2(x)$, $C_2(y)$, $C_2(z)$, so the *T* operator has only four non-vanishing terms:

T	E	...	$C_2(x)$	$C_2(y)$	$C_2(z)$
$R_j S_A$	S_A	...	S_C	S_D	S_B
T	3	...	-1	-1	-1
$\chi_i^R R_j S_A$	3 S_A	...	- S_C	- S_D	- S_B

The σ-SALCs of CH₄ (T_d **)**

 $P(T)s_A \propto 3s_A - s_C - s_D - s_B$

 \blacktriangleright This function is orthogonal to the *A* SALC, $\Phi_1 = \frac{1}{2}(s_A + s_B + s_C + s_C)$ s_D), and could be normalized to give the function

$$
\Phi(T) = 1/(2\sqrt{3})(3s_A - s_C - s_D - s_B)
$$

- \odot This SALC is supposed to match with one of the 2*p* AOs on carbon. Φ(*T*) makes no sense geometrically for such overlap!
- \odot *P(T)* s_A must be a combination of all three functions:

$$
P(Tz)sA \propto sA + sB - sC - sD
$$

$$
P(Ty)sA \propto sA - sB - sC + sD
$$

$$
P(Tx)sA \propto sA - sB + sC - sD
$$

$$
P(T)s_A \propto 3s_A - s_B - s_C - s_d
$$

After normalization, the three T_2 SALCs of MX₄ (T_d) are:

$$
\Phi_2 = \frac{1}{2} \{ s_A + s_B - s_C - s_D \}
$$

$$
\Phi_3 = \frac{1}{2} \{ s_A - s_B - s_C + s_D \}
$$

$$
\Phi_4 = \frac{1}{2} \{ s_A - s_B + s_C - s_D \}
$$