Formulating SALCs with Projection Operators

- ✓ The mathematical form of a SALC for a particular symmetry species cannot always be deduced by inspection (e.g., e_{1g} and e_{2u} pi-MOs of benzene).
- ✓ A *projection operator* is a function that acts on one wave function of the basis set of functions that comprise the SALCs (e.g., one of the six p_z orbitals on the carbon atoms in the ring of benzene) to "project out" the SALC function.
- ✓ A projection operator for each symmetry species must be applied to the reference function to generate all the symmetry-allowed SALCs.
- ✓ The projection operator for a given symmetry species contains terms for each and every operation of the group (not just each class of operations).

Full-Matrix vs. Character Form of the Projection Operator

- ✓ The full form of the projection operator function for degenerate species, which often directly generates the set of all SALCs belonging to a degenerate symmetry species, requires use of the full operator matrix for each and every operation of the irreducible representation; i.e., the full-matrix form of the irreducible representation.
- ✓ Because there are no generally available tabulations of the full-matrix forms of the irreducible representations for groups with degenerate species, a simpler form of the projection operator that uses only the characters for each operation is most often used.
- Solution The character form of the projection operator for degenerate species generates only one of the degenerate SALCs, requiring other means to deduce the companion functions.
- We will only use the character form of the projection operator function.

The Projection Operator in Characters

✓ The projection operator in character form, P_i , acting on a reference function of the basis set, ϕ_i , generates the SALC, S_i , for the *i*th allowed symmetry species as

$$S_i \propto P_i \varphi_t = \frac{d_i}{h} \sum_R \chi_i^R R_j \varphi_t$$

in which

 d_i = dimension of the *i*th irreducible representation,

h =order of the group,

 χ_i^R = each operation's character in the *i*th irreducible representation, R_j = the operator for the *j*th operation of the group.

- ✓ The term $R_j \varphi_t$ gives one of the several basis functions of the set of functions forming the SALCs, in a positive or negative sense.
- ✓ The summation is taken over *all operations* of the group, not all classes of operations.
- ✓ The results $P_i \varphi_i$ are not the final SALCs; they need "cleaning up".

Requirements for a Wave Function

1. The function must be normalized.

$$N^2 \int \Psi \Psi^* d\tau = 1,$$

where N is the normalization constant.

We can routinely ignore the factor d_i / h in the projection operator expression.

2. All wave functions must be orthogonal.

$$\int \Psi_i \Psi_j d\tau = 0 \text{ if } i \neq j$$

Mathematical Simplification When Taking Products of LCAOs

✓ The $P_i \varphi_t$ products have the general form

$$(a_i\varphi_i \pm a_{i+1}\varphi_{i+1} \dots \pm a_n\varphi_n)(b_j\varphi_j \pm b_{j+1}\varphi_{j+1} \dots \pm b_m\varphi_m)$$

✓ But in general

$$\int \varphi_i \varphi_j d\tau = \delta_{ij}$$

Thus, all $\varphi_i \varphi_j$ $(i \neq j)$ terms vanish, and all $\varphi_i \varphi_i$ or $\varphi_j \varphi_j$ terms (i = j) are unity.

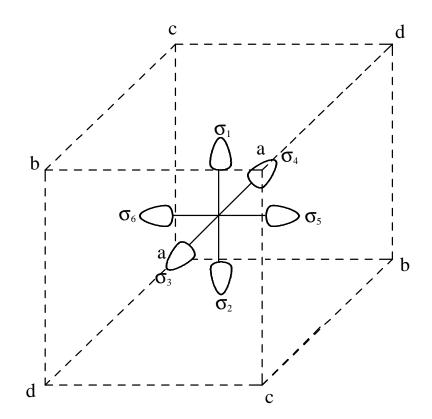
Ignore the cross terms when normalizing or testing for orthogonality!

The σ -SALCs of MX₆ (O_h)

Example: Generate the SALCs for sigma-bonding of six ligands to a central atom in an octahedral MX_6 complex.

✓ From the transformation of six octahedrally arranged vectors pointing toward a central atom, the reducible representation for the six SALCs can be generated and reduced as follows:

$$\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}$$



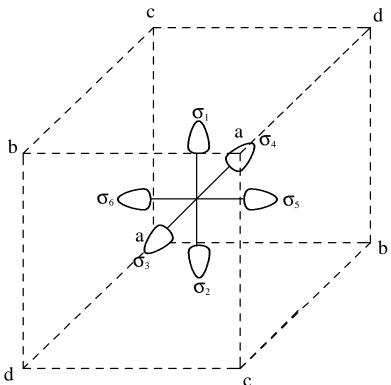
Minimizing the Work

- \checkmark *O_h* has 48 operations, so each projection operator will have 48 terms.
- ✓ The rotational subgroup *O* has half as many operations (h = 24) but still preserves the essential symmetry.

Solution Carry out the work in O and correlate the results to O_h .

✓ In O, $\Gamma_{\sigma} = A_1 + E + T_1$, which has obvious correlations to $\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}$ in O_h .

Labeling the Symmetry Elements



✓ 8 C_3 in *O* refers to 4 C_3 and 4 C_3^2 whose axes run along the cube diagonals.

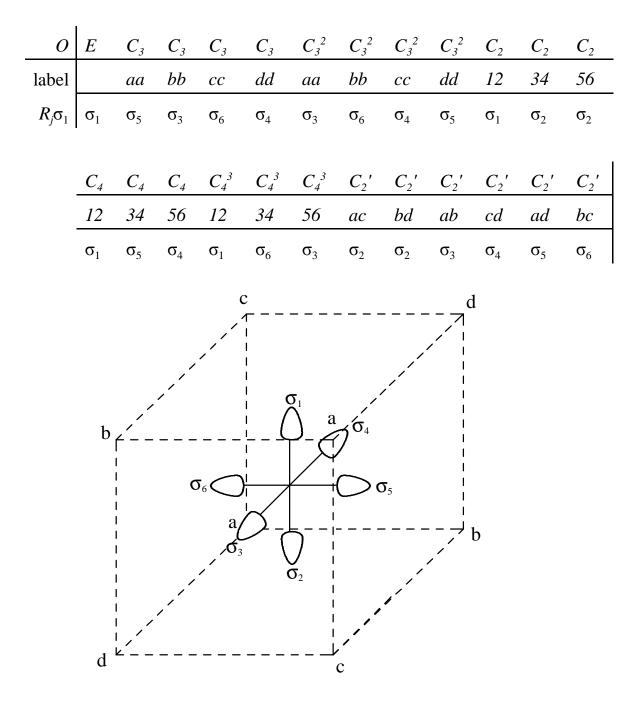
Label these by the corners through which they pass: e.g., *aa*, *bb*, *cc*, *dd*.

✓ $3C_2$, $3C_4$, and $3C_4^3$ have axes that run through *trans*-related pairs of ligands.

Label these by the pairs of ligands through which they pass; e.g., 12, 34, 56.

- ✓ $6C_2$ 'have axes that pass through the mid-points of opposite cube edges.
 - Label these by the two-letter designation of the cube edges through which they pass; e.g., *ac*, *bd*, *ab*, *cd*, *ad*, *bc*.
- ✓ C_3 rotations are clockwise, viewed from the upper cube corner through which the axis passes.
- \checkmark C₄ rotations are clockwise, viewed from the lower-numbered ligand.

The Effect of the Operations of O on a Reference Function σ_1



Projection Operator for the A_1 Species in $O(A_{1g} \text{ in } O_h)$

0	E	C_3	C_3	C_3	C_3	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_2	C_2	C_2
label		aa	bb	сс	dd	aa	bb	сс	dd	12	34	56
$R_j \sigma_1$	σ_1	σ_5	σ_3	σ_6	σ_4	σ_3	σ_6	σ_4	σ_5	σ_1	σ_2	σ_2
A_1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi_i^R R_j \sigma_1$	σ_1	σ_5	σ_3	σ_6	σ_4	σ_3	σ_6	σ_4	σ_5	σ_1	σ_2	σ_2
	C_4	C_4	C_4	$C_{4}^{\ 3}$	$C_{4}^{\ 3}$	$C_{4}^{\ 3}$	C_2'	C_2'	C_2'	C_2'	C_2'	C_2'
	12	34	56	12	34	56	ac	bd	ab	cd	ad	bc
	σ_1	σ_5	σ_4	σ_1	σ_6	σ_3	σ_2	σ_2	σ_3	σ_4	σ_5	σ_6
	1	1	1	1	1	1	1	1	1	1	1	1
	σ_1	σ_5	σ_4	σ_1	σ_6	σ_3	σ_2	σ_2	σ_3	σ_4	σ_5	σ_6

Summing all the $\chi_i^R R_j \sigma_1$ terms gives

 $P(A_1)\sigma_1 \propto 4\sigma_1 + 4\sigma_2 + 4\sigma_3 + 4\sigma_4 + 4\sigma_5 + 4\sigma_6$ $\propto \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6$

SALC for A_{1g}

Normalizing:

$$N^{2} \int (\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6})^{2} d\tau$$

= $N^{2} \int (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + \sigma_{5}^{2} + \sigma_{6}^{2}) d\tau$
= $N^{2} (1 + 1 + 1 + 1 + 1 + 1) = 6N^{2} \equiv 1$
 $\Rightarrow N = 1/\sqrt{6}$

Therefore, the normalized A_{1g} SALC is

$$\Sigma_{1}(A_{1g}) = 1/\sqrt{6}(\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6})$$

Projection Operator for the First of Two *E* **SALCs** (E_u in O_h)

✓ In *O*, $\chi_R = 0$ for $6C_4$ and $6C_2'$. Therefore, ignore the last 12 terms.

0	E	C_{3}	C_{3}	C_{3}	C_{3}	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_2	C_2	C_2
											34	
$R_j \sigma_1$	σ_1	σ_5	σ_3	σ_6	σ_4	σ_3	σ_6	σ_4	σ_5	σ_1	σ_2	σ_2
E	2	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2
$\chi_i^R R_j \sigma_1$	$2\sigma_1$	-σ ₅	-σ ₃	-σ ₆	-σ ₄	-σ ₃	-σ ₆	-σ ₄	-σ ₅	$2\sigma_1$	$2\sigma_2$	$2\sigma_2$

Summing across all $\chi_i^R R_j \sigma_1$ gives

$$P(E)\sigma_1 \propto 4\sigma_1 + 4\sigma_2 - 2\sigma_3 - 2\sigma_4 - 2\sigma_5 - 2\sigma_6$$

$$\propto 2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6$$

Normalizing:

$$N^{2} \int (2\sigma_{1} + 2\sigma_{2} - \sigma_{3} - \sigma_{4} - \sigma_{5} - \sigma_{6})^{2} d\tau$$

= $N^{2} \int (4\sigma_{1}^{2} + 4\sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + \sigma_{5}^{2} + \sigma_{6}^{2}) d\tau$
= $N^{2} (4 + 4 + 1 + 1 + 1 + 1) = 12N^{2} \equiv 1$
 $\Rightarrow N = 1/\sqrt{12} = 1/(2\sqrt{3})$

After normalization:

$$\Sigma_2(E) = 1/(2\sqrt{3})(2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)$$

Test of Orthogonality with $\Sigma_1(A_1)$

 $\int [\Sigma_1(A)] [\Sigma_2(E)] d\tau =$ $\int (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6) (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6) d\tau$ = 2 + 2 - 1 - 1 - 1 - 1 = 0

But $\Sigma_2(E)$ is only the first of two degenerate functions.

 \otimes How do we find the partner?

Finding the Partner to $\Sigma_2(E)$ - Method I

Method I: Apply the *E* Projection operator to another reference function, here σ_3 .

0	E	C_3	C_{3}	C_{3}	C_{3}	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_{3}^{2}	C_2	C_2	C_2
label		aa	bb	СС	dd	aa	bb	сс	dd	12	34	56
$R_j \sigma_3$	σ_3	σ_1	σ_6	σ_2	σ_6	σ_5	σ_1	σ_5	σ_2	σ_4	σ_3	σ_4
E	2	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2
$\chi_i^R R_j \sigma_3$	$2\sigma_3$	- σ ₁	-σ ₆	-σ ₂	-σ ₆	-σ ₅	-σ ₁	-σ ₅	- σ ₂	$2\sigma_4$	$2\sigma_3$	$2\sigma_4$

This gives

$$P(E)\sigma_3 \propto -2\sigma_1 - 2\sigma_2 + 4\sigma_3 + 4\sigma_4 - 2\sigma_5 - 2\sigma_6$$

$$\propto -\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6$$

Orthogonal to
$$\Sigma_1(A)$$
?

$$\int (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)(-\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6)d\tau$$

$$= -1 - 1 + 2 + 2 - 1 - 1 = 0$$

$$\Rightarrow Yes$$

Orthogonal to
$$\Sigma_2(E)$$
?

$$\int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(-\sigma_1 - \sigma_2 + 2\sigma_3 + 2\sigma_4 - \sigma_5 - \sigma_6)d\tau$$

$$= -2 - 2 - 2 - 2 + 1 + 1 = -6 \neq 0$$

$$\Rightarrow No!$$

 \otimes What went wrong?

Notes on Method I for Finding a Degenerate Partner

- Changing the reference function after finding the first member of a degenerate set implicitly changes the axis orientation. The resulting function will be one of the following:
 - A legitimate partner wave function in either its positive or negative form. [Not this time!]
 - The negative of the first member of the degenerate set. [Not a useful result, and not what happened this time.]
 - A linear combination of the first member with its partner(s). If this is the case, try various combinations of the two projected functions to find a function that is orthogonal. [Looks like this must be what we got!]

Finding the Partner to $\Sigma_2(E)$ - Method I

By trial and error with various combinations we find that this works:

$$P(E)\sigma_{1} = 2\sigma_{1} + 2\sigma_{2} - \sigma_{3} - \sigma_{4} - \sigma_{5} - \sigma_{6}$$

$$2P(E)\sigma_{3} = -2\sigma_{1} - 2\sigma_{2} + 4\sigma_{3} + 4\sigma_{4} - 2\sigma_{5} - 2\sigma_{6}$$

$$3\sigma_{3} + 3\sigma_{4} - 3\sigma_{5} - 3\sigma_{6}$$

$$\propto \sigma_{3} + \sigma_{4} - \sigma_{5} - \sigma_{6}$$

This result is orthogonal to $\Sigma_2(E)$,

$$\int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)d\tau$$

= 0 + 0 - 1 - 1 + 1 + 1 = 0

and also to $\Sigma_1(A_1)$,

$$\int (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)d\tau$$

= 0 + 0 + 1 + 1 - 1 - 1 = 0

The normalized partner wave function, then, is

$$\Sigma_3(E) = \frac{1}{2}(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)$$

Finding the Partner to $\Sigma_2(E)$ - Method II

Method II: Apply an operation of the group to the first function found.

- Principle: The effect of any group operation on a wave function of a degenerate set is to transform the function into the positive or negative of itself, a partner, or a linear combination of itself and its partner or partners.
- Suppose we perform $C_3(aa)$ on our first degenerate function.
- ✓ Effect of $C_3(aa)$ on the functions of the basis set:

Before	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
After	σ_5	σ_{6}	σ_1	σ_2	σ_3	σ_4

✓ Effect of $C_3(aa)$ on $\Sigma_2(E)$:

$$(2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6) \rightarrow (2\sigma_5 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_3 - \sigma_4)$$
$$= (-\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 + 2\sigma_5 + 2\sigma_6)$$

Is this new function orthogonal to $\Sigma_2(E)$?

$$\int (2\sigma_1 + 2\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6)(-\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 + 2\sigma_5 + 2\sigma_6)d\tau$$

= -2 - 2 - 1 - 1 - 2 - 2 = -10 \neq 0
\Rightarrow No!

Finding the Partner to $\Sigma_2(E)$ - Method II

The new function must be a combination of $\Sigma_2(E)$ and the partner function.

By trial-and-error:

$$-\Sigma_{2}: \qquad -2\sigma_{1} - 2\sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6}$$

$$-2\{\Sigma_{2} \times R[C_{3}(aa)]\} \qquad +2\sigma_{1} + 2\sigma_{2} + 2\sigma_{3} + 2\sigma_{4} - 4\sigma_{5} - 4\sigma_{6}$$

$$+3\sigma_{3} + 3\sigma_{4} - 3\sigma_{5} - 3\sigma_{6}$$

$$\propto \sigma_{3} + \sigma_{4} - \sigma_{5} - \sigma_{6}$$

This is the same result as found by Method I:

$$\Sigma_3(E) = \frac{1}{2}(\sigma_3 + \sigma_4 - \sigma_5 - \sigma_6)$$

Note: In T_1 of the group O, for $8C_3 \chi = 0$; therefore, skip the first eight terms in the operator expression.

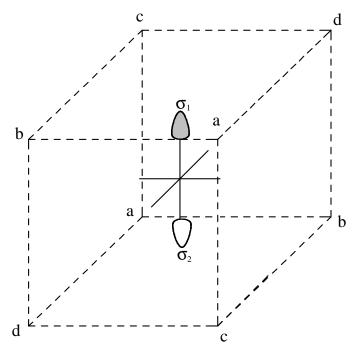
0	E	C_3	C_3	C_{3}	C_{3}	C_{3}^{2}	C_{3}^{2}	C_3^{2}	C_{3}^{2}	C_2	C_2	C_2
label		aa	bb	сс	dd	aa	bb	сс	dd	12	34	56
$R_j \sigma_1$	σ_1	σ_5	σ_3	σ_6	σ_4	σ_3	σ_6	σ_4	σ_5	σ_1	σ_2	σ_2
T_1	3	0	0	0	0	0	0	0	0	-1	-1	-1
$\chi_i^R R_j \sigma_1$	$3\sigma_1$									-σ ₁	-σ ₂	-σ ₂
	C_4	C_4	C_4	$C_{4}^{\ 3}$	$C_{4}^{\ 3}$	$C_{4}^{\ 3}$	C_2'	C_2'	C_2'	C_2'	C_2'	C_2'
	12	34	56	12	34	56	ac	bd	ab	cd	ad	bc
	σ_1	σ_5	σ_4	σ_1	σ_6	σ_3	σ_2	σ_2	σ_3	σ_4	σ_5	σ_6
	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
	σ_1	σ_5	σ_4	σ_1	σ_6	σ_3	-σ ₂	-σ ₂	-σ ₃	-σ ₄	-σ ₅	-σ ₆

Summing across the $\chi_i^R R_j \sigma_1$: $P(T_1)\sigma_1 \propto 4\sigma_1 - 4\sigma_2 \propto \sigma_1 - \sigma_2$

We can readily show that this is orthogonal to the previous three functions for *A* and *E*, and on normalization we obtain the SALC

 $\Sigma_4(T_1) = 1/\sqrt{2} (\sigma_1 - \sigma_2)$

The partner functions become apparent from considering the form of $\Sigma_4(T_1)$.



The other two functions must have the same form along the other two orthogonal axes:

$$\Sigma_5(T_1) = 1/\sqrt{2} (\sigma_3 - \sigma_4)$$
$$\Sigma_6(T_1) = 1/\sqrt{2} (\sigma_5 - \sigma_6)$$

Alternately, note the effects of $C_3(aa)$ and $C_3^2(aa)$ on $(\sigma_1 - \sigma_2)$:

$$R[C_3(aa)] \times (\sigma_1 - \sigma_2) = (\sigma_5 - \sigma_6) \Rightarrow \Sigma_6(T_1)$$
$$R[C_3^2(aa)] \times (\sigma_1 - \sigma_2) = (\sigma_3 - \sigma_4) \Rightarrow \Sigma_5(T_1)$$

Summary: The Six σ -SALCs of MX₆ (O_h)

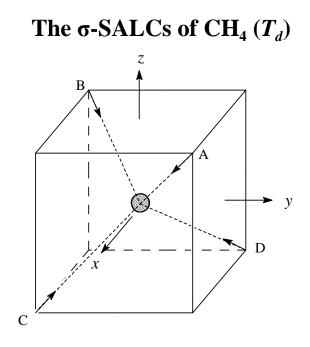
$$\Sigma_{1}(A_{1g}) = 1/\sqrt{6}(\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6})$$

$$\Sigma_{2}(E_{u}) = 1/(2\sqrt{3})(2\sigma_{1} + 2\sigma_{2} - \sigma_{3} - \sigma_{4} - \sigma_{5} - \sigma_{6})$$

$$\Sigma_{3}(E_{u}) = \frac{1}{2}(\sigma_{3} + \sigma_{4} - \sigma_{5} - \sigma_{6})$$

$$\Sigma_{3}(T_{u}) = 1/\sqrt{2}(\sigma_{u} - \sigma_{1})$$

$$\begin{split} \Sigma_4(T_{1g}) &= 1/\sqrt{2} \ (\sigma_1 - \sigma_2) \\ \Sigma_5(T_{1g}) &= 1/\sqrt{2} \ (\sigma_3 - \sigma_4) \\ \Sigma_6(T_{1g}) &= 1/\sqrt{2} \ (\sigma_5 - \sigma_6) \end{split}$$



 $\Gamma = A_1 + T_2$

- ✓ The A_1 SALC is obvious, so only use the projection operator for the T_2 SALCs.
- ✓ The group T_d has h = 24, but its rotational subgroup T has h = 12. Therefore, do the work in T, where the T species corresponds to T_2 of T_d .
- ✓ For the irreducible representation *T*, the only non-zero characters are *E*, $C_2(x)$, $C_2(y)$, $C_2(z)$, so the *T* operator has only four non-vanishing terms:

The σ -SALCs of CH₄ (T_d)

 $P(T)s_A \propto 3s_A - s_C - s_D - s_B$

✓ This function is orthogonal to the *A* SALC, $\Phi_1 = \frac{1}{2}(s_A + s_B + s_C + s_D)$, and could be normalized to give the function

$$\Phi(T) = 1/(2\sqrt{3})(3s_A - s_C - s_D - s_B)$$

- \otimes This SALC is supposed to match with one of the 2*p* AOs on carbon. $\Phi(T)$ makes no sense geometrically for such overlap!
- \odot $P(T)s_A$ must be a combination of all three functions:

$$P(T^{z})s_{A} \propto s_{A} + s_{B} - s_{C} - s_{D}$$
$$P(T^{y})s_{A} \propto s_{A} - s_{B} - s_{C} + s_{D}$$
$$P(T^{x})s_{A} \propto s_{A} - s_{B} + s_{C} - s_{D}$$

$$P(T)s_A \propto 3s_A - s_B - s_C - s_d$$

V

After normalization, the three T_2 SALCs of MX₄ (T_d) are:

$$\Phi_2 = \frac{1}{2} \{ s_A + s_B - s_C - s_D \}$$

$$\Phi_3 = \frac{1}{2} \{ s_A - s_B - s_C + s_D \}$$

$$\Phi_4 = \frac{1}{2} \{ s_A - s_B + s_C - s_D \}$$