Key Developments Leading to Quantum Mechanical Model of the Atom

1900 Max Planck interprets black-body radiation on the basis of quantized oscillator model, leading to the fundamental equation for the energy of electromagnetic radiation, $E=h \mathrm{v}$.

1905 Albert Einstein interprets photoelectric effect on the basis of quantized packets of light energy (photons).

1913 Niels Bohr applies quantum hypothesis to classical model of one-electron atoms and successfully interprets line spectra on the basis of quantized energy states given by

$$
E=\frac{-2 \pi^{2} m Z^{2} e^{4}}{n^{2} h^{2}}=\frac{-B Z^{2}}{n^{2}} \quad n=1,2,3, \ldots
$$

Energy Level Diagram for Hydrogen Atom

Key Developments Leading to Quantum Mechanical Model of the Atom

1923 Louis deBroglie develops equation for waveparticle duality of matter:

$$
\lambda=h / p=h / m v
$$

(Experimentally verified in 1927 from electron scattering experiments of Davisson and Germer, and by G. P. Thomson.)

1926 Irwin Schrödinger proposes wave equation for particles bound within a potential energy field, such as an atom:

$$
\mathcal{H} \psi=E \psi
$$

(Application to one-electron atom case leads to same energy equation as Boh's model.)

1927 Werner Heisenberg proposes Uncertainty Principle, which sets limits on the ability to determine position and momentum simultaneously:

$$
\Delta \mathrm{x} \Delta p \geq h / 4 п
$$

These developments strongly indicated that a deterministic model, such as Bohr's, could not be correct.

Model must be based on quantized energy, waveparticle duality, and statistical approach.

Schrödinger Equation in One Dimension (Particle on a Line)

In general

$$
\mathcal{H} \psi=E \Psi
$$

For a particle freely moving in one dimension, x

$$
\left(\frac{-h^{2}}{8 \Pi^{2} m} \frac{d^{2}}{d x^{2}}+V\right) \Psi=E \Psi
$$

If no force acts on the particle, we may set $V=0$.

$$
\left(\frac{-h^{2}}{8 \Pi^{2} m} \frac{d^{2}}{d x^{2}}\right) \Psi=E \psi
$$

Schrödinger Equation in One Dimension (Particle in a Box)

Suppose the line segment has a length a, and $V=\infty$ at its ends.

- At the boundaries, where $V=\infty, x=0$ and $x=a, \Psi=0$.
- Between $0<x<a$,

$$
\left(\frac{-h^{2}}{8 \Pi^{2} m} \frac{d^{2}}{d x^{2}}\right) \Psi=E \psi
$$

- Solutions, Ψ, must be continuous and single-valued.
- Therefore, at $x=0$ and $x=a$ any solution must have ψ $=0$ (boundary conditions).
- Solutions that meet the boundary conditions have the form

$$
\psi=A \sin (n \Pi x / a)
$$

where $n=1,2,3, \ldots$ and A is a proportionality constant.
Note that $\sin (n \Pi x / a)=0$ when $x=0$ and when $x=a$.

Proof of Solution

Substitute $\psi=A \sin (n \Pi x / a)$ into $\left(\frac{-h^{2}}{8 \Pi^{2} m} \frac{d^{2}}{d x^{2}}\right) \Psi=E \psi$.
Left side:

$$
\frac{-h^{2}}{8 \Pi^{2} m}\left(\frac{-n^{2} \Pi^{2}}{a^{2}}\right) A \sin \frac{n \Pi x}{a}=\frac{n^{2} h^{2}}{8 m a^{2}} A \sin \frac{n \Pi x}{a}
$$

Right side:

$$
E A \sin (n \Pi x / a)
$$

The left and right sides are equal, so $\psi=A \sin (n \Pi x / a)$ is a solution if

$$
E=n^{2} h^{2} / 8 m a^{2} \quad n=1,2,3, \ldots
$$

Allowed energies for the system are quantized into discreet states such that

$$
E \propto n^{2}
$$

Energy Level Diagram for Particle in a Box

Schrödinger Wave Equation for One-Electron Atoms

$$
\mathcal{H} \Psi=E \Psi
$$

$E=$ energy of the system (eigen value)
$\Psi=$ wave function solution (eigen function)
$\mathcal{H}=$ Hamiltonian operator, expressing potential and kinetic energy of the system

Explicit wave equation for hydrogen:

$$
\left[-\frac{h^{2}}{8 \Pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{e^{2}}{r}\right] \Psi=E \Psi
$$

Each Ψ solution is a mathematical expression that is a function of three quantum numbers: n, l, and m_{l}.

Probability of Finding the Electron Somewhere Around the Nucleus

For light, intensity is proportional to amplitude squared:

$$
I \propto A^{2}
$$

By analogy, the "intensity" of an electron at a point ${ }^{1}$ in space (i.e., its probability) is proportional to the amplitude of its wave function squared, Ψ^{2} (or if Ψ contains $i, \Psi \Psi^{*}$):

$$
P \propto \Psi^{2}
$$

This is the "Copenhagen Interpretation" of the wave function, due to Max Born and co-workers.

Einstein to Born:
"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I , at any rate, am convinced that He is not playing at dice." ${ }^{2}$

[^0]
Restrictions on Ψ

1. Ψ has a value for every point in space. Otherwise the probability would be undefined somewhere.
2. I can have only one value at any point. Otherwise the probability would be ambiguous at some points.
3. Ψ cannot be infinite at any point in space. Otherwise its position would be fixed, in violation of the Heisenberg Uncertainty Principle.
4. Ψ can be zero at some points in space (node).

This means the electron is not there.
5. Probability of the electron at a point (zero volume) is vanishingly small.
Therefore, we calculate Ψ^{2} for small volume segment $d x d y d z$.

$$
P(x, y, z) d x d y d z=P d \tau
$$

6. The sum of Ψ^{2} over all space is unity.

$$
\int \Psi^{2} d \tau=\int P d \tau=1
$$

The electron must be somewhere.

Depicting the Wave Function and Orbitals

- Ψ is usually cast in polar coordinates r, θ, φ :

$$
\Psi=R(r) \Theta(\theta) \Phi(\varphi)
$$

- Customarily, $R(r)$ vs. r is plotted, and separate plots of $\Theta(\theta) \Phi(\varphi)$ are generated, often in three dimensions.
- $\quad R(r)$ is called the radial function, and $\Theta(\theta) \Phi(\varphi)$ is called the angular function.
- $\quad R(r)$ depends on n and $l ; \Theta(\theta) \Phi(\varphi)$ depends on l and m_{l}.
- To depict probability, the squares of the functions are rendered.
- Modern graphical depictions can convincingly show the overall three-dimensionality of all three functions simultaneously.

Representations of Orbitals

1. Radial Plot:

Two-dimensional plot of R vs. r or R^{2} vs.
r without trying to show the three dimensional aspects of the distribution.
Sometimes a particular direction in space is chosen (x, y, z) instead of any direction r.
2. Radial Distribution Function:

Plot of $4 \Pi r^{2} R^{2}$ vs. r. Probability of finding the electron within a vanishingly thin spherical shell with a radius of r from the nucleus. Going out from the nucleus, this shows the variation in probability on the surface of increasingly larger spherical shells.
3. Electron Charge Cloud (Electron Density) Diagram Three-dimensional picture of Ψ^{2} in which higher probability is rendered by darker shading or stippling. Most of such diagrams are meant to show approximately $90-99 \%$ of the total probability.

Representations of Orbitals

4. Contour Diagram

Two-dimensional cross section (slice) through the probability distribution, Ψ^{2}. Lines on the drawing connect regions of equal probability, much like isobars on a weather map connect regions of equal pressure.
5. Boundary Surface Diagram

Three-dimensional solid model (or a picture of such a model) constructed so as to represent a surface that encloses approximately $90-99 \%$ of the total probability. These are sometimes called "balloon models". Sketches of orbitals used in routine work are generally twodimensional representations of "balloon models".

Probability vs. Distance from Nucleus
1s Wave Function

$$
n=1, l=0, m_{l}=0
$$

Ψ^{2}

Radial plot
$4 \pi r^{2} \Psi^{2}$

Radial distribution plot

Three-Dimensional Representation of a $1 s$ Orbital

Electron Cloud Representation

Boundary Surface Model

Ψ and Ψ^{2} vs. Distance from the Nucleus

2s Wave Function

$$
n=2, l=0, m_{l}=0
$$

Three-Dimensional Representation of a $2 s$ Orbital

Electron Cloud Representation

Boundary Surface Model

Cutaway Model of 2s Orbital

The $2 s$ orbital has one spherical node.

Ψ and Ψ^{2} vs. Distance from the Nucleus $2 p_{z}$ Wave Function

Electron Cloud Representation of a $2 p_{z}$ Orbital

The plane perpendicular to z ($x y$ plane) passing through the nucleus is a node.

The Three Degenerate $2 p$ Orbitals

$$
n=2, l=1, m_{l}=+1,0,-1
$$

Cutaway Model of $3 \boldsymbol{s}$ Orbital
 $$
n=3, l=0, m_{l}=0
$$

The $3 s$ orbital has two spherical nodes.

$$
\begin{gathered}
\text { 3p Orbitals } \\
n=3, l=1, m_{l}=+1,0,-1
\end{gathered}
$$

Three degenerate $3 p$ orbitals, oriented along the axes of the coordinate system ($3 p_{x}, 3 p_{y}, 3 p_{z}$).

More extensive (bigger) than $2 p$ with additional lobes.

In addition to the nodal plane, inner lobes are separated from outer lobes by a spherical node.

Cutaway model showing nodes

$$
\begin{gathered}
\text { 3d } \text { Orbitals } \\
n=3, l=2, m_{l}=+2,+1,0,-1,-2
\end{gathered}
$$

$3 d_{x y}$

$3 d_{x z}$

$3 d_{y z}$

$3 d_{z^{2}}$

The $3 d_{x y}, 3 d_{x z}$, and $3 d_{y z}$ orbitals' lobes are between the axes in their names.

The $3 d_{x^{2}-y^{2}}$ orbital's lobes are on the x and y axes.

Nodes of 3d Orbitals

"Cloverleaf" shaped $3 d$ orbitals have two nodal planes intersecting at the nucleus, which separate the four lobes.

The $3 d_{z^{2}}$ orbital has two nodal cones whose tips meet at the nucleus, which separate the "dumbbell" lobes from the "doughnut" ring.

"Balloon" Models of Atomic Orbitals for Routine Sketching

S

p

"cloverleaf" d
$d_{z^{2}}$

Summary

Orbitals in One-electron Atoms ($\left.\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \ldots\right)$

1. All orbitals with the same value of the principal quantum number n have the same energy; e.g., $4 s=$ $4 p=4 d=4 f$. (This is not true for multielectron atoms.)
2. The number of equivalent (degenerate) orbitals in each subshell is equal to $2 l+1$.
3. For orbitals with the same l value, size and energy increase with n; e.g., $1 s<2 s<3 s$.
4. For orbitals of the same l value, the number of nodes increases with n.

Orbital	$1 s$	$2 s$	$3 s$	$4 s$
Nodes	0	1	2	3
Orbital		$2 p$	$3 p$	$4 p$
Nodes		1	2	3

[^0]: ${ }^{1}$ Strictly, a point has no volume and therefore $\psi=0$ and $\psi^{2}=0$. The term "point" is used here to mean "a vanishingly small volume element".
 ${ }^{2}$ The Born-Einstein Letters, translated by Irene Born. New York: Walker and Company, 1971, pp. 90-91.

