
Key Developments Leading to 
Quantum Mechanical Model of the Atom

1900 Max Planck interprets black-body radiation on
the basis of quantized oscillator model, leading
to the fundamental equation for the energy of
electromagnetic radiation, E = hν.

1905 Albert Einstein interprets photoelectric effect on
the basis of quantized packets of light energy
(photons).

1913 Niels Bohr applies quantum hypothesis to
classical model of one-electron atoms and
successfully interprets line spectra on the basis of
quantized energy states given by 
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Key Developments Leading to 
Quantum Mechanical Model of the Atom

1923 Louis deBroglie develops equation for wave-
particle duality of matter:

λ = h/p = h/mv
(Experimentally verified in 1927 from electron
scattering experiments of Davisson and Germer,
and by G. P. Thomson.)

1926 Irwin Schrödinger proposes wave equation for
particles bound within a potential energy field,
such as an atom:

,ψ = Eψ
(Application to one-electron atom case leads to
same energy equation as Boh’s model.)

1927 Werner Heisenberg proposes Uncertainty
Principle, which sets limits on the ability to
determine position and momentum
simultaneously:

∆x∆p $h/4̟

L These developments strongly indicated that a
deterministic model, such as Bohr’s, could not be
correct.

L Model must be based on quantized energy, wave-
particle duality, and statistical approach.



Schrödinger Equation in One Dimension
(Particle on a Line)

In general
,ψ = Eψ

For a particle freely moving in one dimension, x
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If no force acts on the particle, we may set V = 0.
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Schrödinger Equation in One Dimension
(Particle in a Box)

Suppose the line segment has a length a, and V = 4 at its
ends.

V
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! At the boundaries, where V = 4, x = 0 and x = a, ψ = 0. 

! Between 0 < x < a,
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! Solutions, ψ, must be continuous and single-valued.
! Therefore, at x = 0 and x = a any solution must have ψ

= 0 (boundary conditions).
! Solutions that meet the boundary conditions have the

form
ψ ' Asin (n̟x/a)

where n = 1, 2, 3, ... and A is a proportionality
constant. 

L Note that sin (n̟x/a) = 0 when x = 0 and when x = a.



Proof of Solution

Substitute  into .ψ ' Asin (n̟x/a)
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Left side:
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Right side:
EA sin(n̟x/a)

The left and right sides are equal, so  isψ ' Asin (n̟x/a)

a solution if
E = n2h2/8ma2 n = 1, 2, 3, ...

L Allowed energies for the system are quantized into
discreet states such that

E % n2



Energy Level Diagram for Particle in a Box
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Schrödinger Wave Equation
for One-Electron Atoms

,Ψ = EΨ

E = energy of the system (eigen value)
Ψ = wave function solution (eigen function)
, = Hamiltonian operator, expressing potential and

kinetic energy of the system

Explicit wave equation for hydrogen:

Each Ψ solution is a mathematical expression that is a
function of three quantum numbers: n, l, and ml.



1Strictly, a point has no volume and therefore ψ = 0 and ψ2 = 0.  The term “point” is used
here to mean “a vanishingly small volume element”.

2The Born-Einstein Letters, translated by Irene Born.  New York: Walker and Company,
1971, pp. 90-91.

Probability of Finding the Electron
Somewhere Around the Nucleus

For light, intensity is proportional to amplitude squared:
I % A2

By analogy, the "intensity" of an electron at a point1 in
space (i.e., its probability) is proportional to the amplitude
of its wave function squared, Ψ2 (or if Ψ contains i, ΨΨ*):

P % Ψ2

This is the "Copenhagen Interpretation" of the wave
function, due to Max Born and co-workers.

Einstein to Born: 
"Quantum mechanics is certainly imposing.  But
an inner voice tells me that it is not yet the real
thing.  The theory says a lot, but does not really
bring us any closer to the secret of the 'old one'. 
I, at any rate, am convinced that He is not
playing at dice." 2 



Restrictions on Ψ

1. Ψ has a value for every point in space.  Otherwise the
probability would be undefined somewhere.

2. Ψ can have only one value at any point.  Otherwise the
probability would be ambiguous at some points.

3. Ψ cannot be infinite at any point in space.  Otherwise its
position would be fixed, in violation of the
Heisenberg Uncertainty Principle.

4. Ψ can be zero at some points in space (node).  
This means the electron is not there.

5. Probability of the electron at a point (zero volume) is
vanishingly small.
Therefore, we calculate Ψ 2 for small volume segment
dx dy dz.

P(x, y, z) dx dy dz = P dτ 

6. The sum of Ψ 2 over all space is unity.
IΨ 2 dτ  =IP dτ = 1

The electron must be somewhere.



Depicting the Wave Function and Orbitals

! Ψ is usually cast in polar coordinates r, θ, φ :
Ψ = R(r)Θ(θ)Φ(φ)

! Customarily, R(r) vs. r is plotted, and separate plots
of Θ(θ)Φ(φ) are generated, often in three dimensions.

! R(r) is called the radial function, and Θ(θ)Φ(φ) is
called the angular function.

! R(r) depends on n and l; Θ(θ)Φ(φ) depends on l and
ml.

! To depict probability, the squares of the functions are
rendered.

! Modern graphical depictions can convincingly show
the overall three-dimensionality of all three functions
simultaneously.



Representations of Orbitals

1. Radial Plot:
Two-dimensional plot of R vs. r or R2 vs.
r without trying to show the three
dimensional aspects of the distribution. 
Sometimes a particular direction in
space is chosen (x, y, z) instead of any
direction r.

2. Radial Distribution Function: 
Plot of 4̟r2R2 vs. r.  Probability of finding the
electron within a vanishingly thin spherical shell
with a radius of r from the nucleus.  Going out
from the nucleus, this shows the variation in
probability on the surface of increasingly larger
spherical shells.

3. Electron Charge Cloud (Electron Density) Diagram
Three-dimensional picture of Ψ2 in
which higher probability is rendered by
darker shading or stippling.  Most of
such diagrams are meant to show
approximately 90-99% of the total
probability.



Representations of Orbitals

4. Contour Diagram
Two-dimensional cross section (slice)
through the probability distribution, Ψ2. 
Lines on the drawing connect regions of
equal probability, much like isobars on
a weather map connect regions of equal
pressure.

5. Boundary Surface Diagram
Three-dimensional solid model (or a
picture of such a model) constructed so
as to represent a surface that encloses
approximately 90-99% of the total
probability.  These are sometimes called
"balloon models".  Sketches of orbitals
used in routine work are generally two-
dimensional representations of "balloon
models".
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1s Wave Function
n = 1, l = 0, ml = 0



Three-Dimensional Representation of a 1s Orbital

Electron Cloud Representation

Boundary Surface Model
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Ψ and Ψ2 vs. Distance from the Nucleus
2s Wave Function
n = 2, l = 0, ml = 0



Three-Dimensional Representation of a 2s Orbital

Electron Cloud Representation

Boundary Surface Model



Cutaway Model of 2s Orbital

The 2s orbital has one spherical node.
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Electron Cloud Representation of a 2p
z
 Orbital

The plane perpendicular to z (xy plane) passing through
the nucleus is a node.
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The Three Degenerate 2p Orbitals
n = 2, l = 1, ml = +1, 0, -1
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Cutaway Model of 3s Orbital
n = 3, l = 0, ml = 0

The 3s orbital has two spherical nodes.



3p Orbitals
n = 3, l = 1, ml = +1, 0, -1

Three degenerate 3p orbitals, oriented along the axes of
the coordinate system (3px, 3py, 3pz).

More extensive (bigger) than 2p with additional lobes.

In addition to the nodal plane, inner lobes are separated
from outer lobes by a spherical node.

3px

Cutaway model showing nodes
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3d Orbitals
n = 3, l = 2, ml = +2, +1, 0, -1, -2

3dxy    3dxz    3dyz

3dx2-y2   3dz2

L The 3dxy, 3dxz, and 3dyz orbitals’ lobes are between the
axes in their names.

L The 3dx2-y2 orbital’s lobes are on the x and y axes. 



Nodes of 3d Orbitals

L “Cloverleaf” shaped 3d orbitals have two nodal
planes intersecting at the nucleus, which separate the
four lobes.

L The 3dz2 orbital has two nodal cones whose tips meet
at the nucleus, which separate the “dumbbell” lobes
from the “doughnut” ring.



"Balloon" Models of Atomic Orbitals
for Routine Sketching

     s p    “cloverleaf” d     dz2



Summary
Orbitals in One-electron Atoms (H, He+, Li2+, ...)

1. All orbitals with the same value of the principal
quantum number n have the same energy; e.g., 4s =
4p = 4d = 4f.  (This is not true for multielectron
atoms.)

2. The number of equivalent (degenerate) orbitals in
each subshell is equal to 2l + 1.

3. For orbitals with the same l value, size and energy
increase with n; e.g., 1s < 2s < 3s.

4. For orbitals of the same l value, the number of nodes
increases with n.

Orbital 1s 2s 3s 4s

Nodes 0 1 2 3

Orbital 2p 3p 4p

Nodes 1 2 3


