Example: Constructing a σ-only MO diagram for Iron Pentacarbonyl, Fe(CO)$_5$
Example: Constructing a MO for Iron Pentacarbonyl, Fe(CO)$_5$

![Diagram of Fe(CO)$_5$]

Point group = D_{3h}

<table>
<thead>
<tr>
<th>D_{3h}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3C_2$</th>
<th>σ_h</th>
<th>$2S_3$</th>
<th>$3\sigma_v$</th>
<th>Σ</th>
<th>Σ/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_σ</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_1'</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>A_2'</td>
<td>5</td>
<td>4</td>
<td>-3</td>
<td>3</td>
<td>0</td>
<td>-9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E''</td>
<td>10</td>
<td>-4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A_1''</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>-9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_2''</td>
<td>5</td>
<td>4</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>E'''</td>
<td>10</td>
<td>-4</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\Gamma_\sigma = 2A_1' + E'' + A_2''$

$d_\Gamma = 2(1) + 1 + 2 = 5$
Example: Constructing a MO for Iron Pentacarbonyl, Fe(CO)$_5$

\[
\Gamma_\sigma = 2A_1' + E' + A_2''
\]

Fe bonding AOs

\[A_1' : 4s, 3dz^2\]
\[E' : (4p_x, 4p_y) (3dx^2-y^2, 3dxy)\]
\[A_2'' : (4p_z)\]

Fe non-bonding AOs

\[E'' : (3dxz, 3dyz)\]
Fe0

$4p$ (a_2'', e')

$4s$ (a_1')

$3d$ (a_1', e', e'')

5CO
Construction of MO diagrams for Transition Metal Complexes

π bonding complexes
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

point group = O_h
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)\textsubscript{6}

![Diagram of Chromium Hexacarbonyl]

\[\Gamma_\pi = T_{1g} + T_{2g} + T_{1u} + T_{2u} \]

\[d_\Gamma = 3 + 3 + 3 + 3 = 12 \]
Example: Constructing a MO for Chromium Hexacarbonyl, \(\text{Cr(CO)}_6 \)

\[
\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}
\]

\[
\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}
\]

- Cr \(\pi \)-bonding AOs
 - \(T_{2g} \) : (3\(d_{xy} \), 3\(d_{xz} \), 3\(d_{yz} \))
 - \(T_{1u} \) : (4\(p_x \), 4\(p_y \), 4\(p_z \))

- \(T_{2g} \) previously considered non-bonding in \(\sigma \)-bonding scheme
- \(T_{1u} \) combines with \(T_{1u} \) SALC in \(\sigma \)-bonding scheme
- \(T_{1g}, T_{2u} \) \(\pi \)-SALCs are non-bonding
Symmetry

T_{1g}

T_{1u}

T_{2g}

T_{2u}

SALCs

z

x

y
• T_{1u} AOs overlap more effectively with T_{1u} σ-SALC thus the π-bonding interaction is considered negligible or at most only weakly-bonding.
$T_{2g} \pi$-MOs

d_{xy}

d_{xz}

d_{yz}

d_{xz}, d_{yz} or d_{xy}
\[\text{HOMO} \rightarrow \Delta_0 \rightarrow \text{LUMO} \]
Dewar-Chatt-Duncanson model

\[\text{Metal } d_{z^2} \leftarrow \sigma \text{ bond carbonyl} \]
\[\text{Metal } d_{x^2-y^2} \leftarrow \sigma \text{ bond carbonyl} \]
\[\text{Metal } d_y \rightarrow \pi\text{-back-donation carbonyl} \]

\(\nu(\text{CO}) \text{ cm}^{-1} \)

- \([\text{Ti(CO)}_6]^{2-}\): 1748
- \([\text{V(CO)}_6]^{-}\): 1859
- \(\text{Cr(CO)}_6\): 2000
- \([\text{Mn(CO)}_6]^{+}\): 2100
- \([\text{Fe(CO)}_6]^{2+}\): 2204
Summary of π-bonding in O_h complexes

π donor ligands result in $L\rightarrow M \ \pi$ bonding, a smaller Δ_o favoring high spin configurations and a decreased stability.

π acceptor ligands result in $M\rightarrow L \ \pi$ bonding, a larger Δ_o favoring low spin configurations with an increased stability.
Example: Constructing π MOs for Titanium Tetraisopropoxido, Ti(OiPr\textsubscript{4})
Example: Constructing π MOs for Titanium Tetraisopropoxoide, Ti(O^iPr)₄

\[
\begin{bmatrix}
-1/2 & \sqrt{3}/2 \\
-\sqrt{3}/2 & -1/2
\end{bmatrix}
\begin{bmatrix}
 x \\
y
\end{bmatrix}
=
\begin{bmatrix}
x' \\
y'
\end{bmatrix}
\]

\[h = 24\]

<table>
<thead>
<tr>
<th>T_d</th>
<th>E</th>
<th>$8C_3$</th>
<th>$3C_2$</th>
<th>$6S_4$</th>
<th>$6\sigma_d$</th>
<th>Σ</th>
<th>Σ/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_π</td>
<td>8</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_1</td>
<td>8</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>8</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>T_1</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>T_2</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

$$\Gamma_\pi = E + T_1 + T_2$$

$$d_{\Gamma} = 2 + 3 + 3 = 8$$
Example: Constructing π MOs for Titanium Tetraisopropoxoide, Ti(OiPr\textsubscript{4})

$$\Gamma_\pi = E + T_1 + T_2$$

- The OiPr SALCs are comprised of filled p_x and p_y orbitals on the O atoms.
- Ti bonding AOs
 - $E : (3dz^2, 3dx^2-y^2)$
 - $T_2 : (4p_x, 4p_y, 4p_z)$
 - $(3dxy, 3dxz, 3dyz)$
- The T_1 SALC is non-bonding.
- Significant overlap occurs between the E SALC and the e AOs on Ti ($3dz^2, 3dx^2-y^2$)
- As the $4p$ AOs on Ti (t_2) are primarily involved in σ-bonding we will assume that they have negligible π-interaction here.

[It is very likely that there is extensive d-p mixing involved in this system.]