Molecular Second-Order Optical Nonlinearities of Metallocenes

Joseph C. Calabrese, Lap-Tak Cheng, Jennifer C. Green, Seth R. Marder, and Wilson Tam

Contribution from the Central Research and Development Department, E. I. du Pont de Nemours & Company, Inc., Experimental Station, P.O. Box 80356, Wilmington, Delaware 19880-0356, Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, England, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, and Molecular Materials Resource Center, The Beckman Institute, California Institute of Technology, Pasadena, California 91125. Received February 4, 1991. Revised Manuscript Received May 16, 1991.

Abstract: The nonresonant quadratic molecular hyperpolarizabilities of several ferrocene and ruthenocene derivatives were studied by dc electric-field-induced second-harmonic generation (EFISH) experiments using fundamental radiation at 1.91 \(\mu \text{m} \). Hyperpolarizabilities approaching that of 4-(dimethylamino)-4'-nitrostilbene (DANS) were observed, indicating that the ferrocene moiety can act as an effective donor. It was found that the dipole projections of the \(\beta \) tensors of ferrocene complexes are comparable to those of methoxyphenyl systems with similar acceptors. Thus, (E)-ferrocenyl-4-(4-nitrophenyl)ethylene (5) has a \(\beta \) value of 31 \(\times 10^{-30} \text{ esu} \) whereas 4-methoxy-4'-nitrostilbene has a value for \(\beta \) of 29 \(\times 10^{-30} \text{ esu} \). Replacement of the iron atom with ruthenium, which has a higher ionization potential, leads to a reduction in \(\beta \) relative to 5. Replacement of a cyclopentadienyl ring with a pentamethylcyclopentadienyl ring leads to increased nonlinearity.

Introduction

There is considerable interest in the synthesis of new materials with large second-order optical nonlinearities because of their potential use in device applications related to telecommunications, optical computing, optical storage, and optical information processing.1–3 Materials with large second-order hyperpolarizabilities \((\beta) \) are needed in order to realize many of these applications. Large second-order hyperpolarizabilities are associated with structures that have large differences between ground-state and excited-state dipole moments.4 Furthermore, \(\beta \) is largest when the transition dipole moments between these states are large and the energy gap between them is small.4–6 Molecules with \(\pi \)-donor–\(\pi \)-acceptor interactions are promising candidates to fulfill the above requirements. For organic compounds, structure–property trends concerning donor–acceptor strengths and the effectiveness of different conjugated backbones have been topics of many studies.7 Our recent efforts have provided an extensive set of internally consistent results on many of the important molecular classes.8 Organometallic and coordination compounds allow us to explore new functionalities for the engineering of nonlinear optical (NLO) hyperpolarizabilities. We can change the transition-metal element, is oxidation state, and the number of \(\pi \) electrons to examine the differences between diamagnetic and paramagnetic complexes and the effect of new bonding geometries and coordination patterns. There are several reasons to speculate that organometallic and coordination compounds may give rise to new and enhanced optical nonlinearities:

1. These compounds can have metal to ligand or ligand to metal charge-transfer bands in the UV–visible region of the spectrum. These optical absorption bands are often associated with large second-order optical nonlinearities.

2. Chromophores containing metals, such as phthalocyanines, are among the most intensely colored materials known. The strength of the optical absorption band (that is related to its transition dipole moment) is also associated with large optical nonlinearities.

3. Organometallic and coordination compounds are often strong oxidizing or reducing agents, since metal centers may be electron rich or poor depending on their oxidation state and ligand environment. Thus, the metal center may be an extremely strong donor or acceptor.

(4) Metals can be used to fine-tune the electronic properties of organic fragments.

In contrast to the wealth of information available regarding the NLO properties of organic molecules, there are few data on organometallic compounds. Initial efforts1–5 to evaluate the potential of organometalllic compounds for quadratic nonlinear optics have been restricted to the Kurzt second-harmonic-gen-

1 E. I. du Pont de Nemours & Co., Inc.
2 Oxford University.
3 Jet Propulsion Laboratory, California Institute of Technology.
4 The Beckman Institute, California Institute of Technology.

eration (SHG) powder test.16 We found that (Z)-1-ferrocenyl-2-(4-nitrophenyl)ethylene (I) has an SHG efficiency 62 times that of urea17 and the related salt (E)-1-ferrocenyl-2-(N-methylpyridinium-4-yl)ethylene iodide (2) has an SHG efficiency roughly 220 times that of urea, the largest efficiency known for an organometallic compound.18 These results demonstrate that organometallic compounds can exhibit large χ^2.19

The magnitude of the SHG signals obtained from the Kdp powder test is largely determined by crystallographic, linear optical (i.e. birefringence), and dispersive factors; therefore, little insight into molecular structure–property relationships can be inferred.1

Solution-phase dc electric-field-induced second-harmonic generation (EFISH)17 (EFISH) is a more appropriate method for hyperpolarizability studies. EFISH provides direct information on vectorial projection (β) of the hyperpolarizability tensor along the molecular dipole (μ) direction. When the dominant charge-transfer (CT) axis and the dipolar axis are roughly collinear, the β determined by EFISH is a measure of the intrinsic nonlinearity of a molecule, assuming experiments are carried out with radiation of sufficiently long wavelength, such that dispersive contributions to the observed SHG signal are negligible. However, there remain important limitations that should be mentioned. First, the rich coordination patterns and ligand structures of organometallic compounds may make interpretation of EFISH results impossible if the molecule lacks a clear CT axis. However, tensorial components only partially active in EFISH may be important in determining bulk properties for such compounds. Second, the EFISH response comprises two parts:

$$
\gamma_{\text{EFISH}} = \gamma + \frac{\mu\beta}{5kT}
$$

where $i = 1$ and 2, denoting the solvent and solute contributions. There is a rotational dipolar part, which is due to the μS product; however, there is a second part, $\gamma + \gamma'$, which is the deformational term summing electronic and hyper-Raman contributions to the EFISH signal. This second term may be significant as a result of the large polarizability of metal-containing compounds. Correction for this electronic contribution can be made by using data obtained from third-harmonic generation experiments, when material absorption permits.18

We are developing a detailed understanding of structural factors that govern intrinsic molecular hyperpolarizabilities of organic and organometallic compounds using EFISH and third-harmonic-generation (THG) measurements.8,18 The low oxidation potential generally observed for ferrocene complexes and the stability of α-ferrocenyl-substituted carbocations lead us to speculate that ferrocene would be an effective charge-transfer (CT) donor for NLO systems.19,20 These factors and the large observed powder efficiencies of several ferrocene complexes11,12 motivated us to characterize β for a series of organometallic complexes. A preliminary communication has been published.21

In this full paper, we report the details of our EFISH measurements, syntheses, and molecular orbital calculations of ferrocene and ruthenocene derivatives. We emphasize that our goal was to probe the effect of systematic structural variations on β, not to find optimized high-β molecules.

Results and Discussion

The donor strength of the metallocene naturally will be dependent on the oxidation potential of the metal center and additional substituents on both five-membered rings. We therefore have studied structural variations including different metal centers, Z and E isomers, symmetric electron-donating substituents in the form of pentamethylcyclopentadienyl rings (Cp*) as well as extension of conjugation, and variation of the acceptor group; the

Table I. Summary of Linear and Nonlinear Optical Data for Metallocenes of the Form (CpX)M(C5H4Y)*

<table>
<thead>
<tr>
<th>compd</th>
<th>M</th>
<th>X</th>
<th>Y</th>
<th>α_{158} esu</th>
<th>α_{252} esu</th>
<th>β_{158} esu</th>
<th>γ_{158} esu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fe</td>
<td>H</td>
<td>COCH$_3$</td>
<td>3.0</td>
<td>2.6</td>
<td>0.3 ± 0.2</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Ru</td>
<td>Me</td>
<td>NO$_2$</td>
<td>5.5</td>
<td>3.9</td>
<td>0.6 ± 0.2</td>
<td>27</td>
</tr>
</tbody>
</table>

* All values of α, β, and γ are ±10% of the reported values.

Scheme I

\[Fe(acac)$_3$ + LiCp* \rightarrow NaCp-CHO \rightarrow Cp*FeCp-CHO \]

\[[Cp*Ru(CH$_2$CN)$_2$C$_6$F$_5$SO$_3$ \rightarrow NaCp-CHO \rightarrow Cp*Ru-Cp-CHO \]

\[Cp*M C$_6$F$_5$-CHO + NaOEt \rightarrow \text{products} \]

formulations of the compounds studied and β values are summarized in Tables I and II. Compounds 3 and 4 (Table I) represent the cyclopentadienyl analogues of acceptor-substituted benzences. Compounds 1 and 5–10 (Table II) have structural resemblance to some previously studied acceptor-substituted stilbenes.22

Preparation of Metallocenes. New metallocenes prepared for this study are compounds 4, 6, 10, and 11 (see Tables I and II). The reaction of diethyl (p-nitrobenzyl)phosphonate with Cp*CH$_2$CHO yields Cp*FeCp-CHO,22 Reaction of Cp*FeCp-CHO with diethyl (p-nitrobenzyl)phosphonate yields compound 6. Compound 11 was similarly prepared from the reaction of the diethyl (p-nitrobenzyl)phosphonate with the analogous Ru compound. The mixed metallocenes, Cp*RuCp-CHO and Cp*RuCp-N0$_2$, were prepared by treating [Cp*Ru(CH$_2$CN)$_2$C$_6$F$_5$SO$_3$] with LiCp* and NaCp-CHO.22 Preparation of mixed metallocenes from [Cp*Ru(CH$_2$CN)$_2$C$_6$F$_5$SO$_3$] has been reported.22 Compound 10 was prepared from the reaction of CpRuCp-CHO with diethyl (p-nitrobenzyl)-phosphonate.

Due to the paucity of structural information on nitrocyclopentadienyl-metal complexes, the X-ray structure of 4 was determined. The Cp*–NO$_2$ group is not perfectly planar; the torsion angle between the plane formed by the Cp ring and the nitro group is 2.3°. Additional information on the structure of 4 is available in the supplementary material.

Nonlinear Optical Studies. The low-energy spectra of simple metallocenes are dominated by two weak bands at 325 and 440 nm (the 440-nm band is actually two unresolved bands) for ferrocene and 277 and 321 nm for ruthenocene.23 The spectrum changes dramatically upon substitution of the Cp ring with conjugated and/or acceptor groups. For example, in the spectrum

Second-Order Optical Nonlinearities of Metallocenes

Table II. Summary of Linear and Nonlinear Optical Data for Metallocenes of the Form \((C_5X_5)M(C_5H_5)-(CH=CH)_x-p-C_6H_4Y \)

<table>
<thead>
<tr>
<th>compd</th>
<th>M</th>
<th>X</th>
<th>n</th>
<th>isomer</th>
<th>(\lambda_{CP} \text{, nm})</th>
<th>(\mu \text{, }10^{-18} \text{ esu})</th>
<th>(\alpha \text{, }10^{-23} \text{ esu})</th>
<th>(\beta \text{, }10^{-30} \text{ esu}^2)</th>
<th>(\gamma \text{, }10^{-36} \text{ esu}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Fe</td>
<td>H</td>
<td>1</td>
<td>E</td>
<td>356/496</td>
<td>4.5</td>
<td>3.9</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fe</td>
<td>H</td>
<td>1</td>
<td>Z</td>
<td>325/480</td>
<td>4.0</td>
<td>3.8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fe</td>
<td>Me</td>
<td>1</td>
<td>E</td>
<td>366/533</td>
<td>4.4</td>
<td>5.3</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fe</td>
<td>H</td>
<td>1</td>
<td>Z</td>
<td>324/466</td>
<td>4.6</td>
<td>3.8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fe</td>
<td>H</td>
<td>1</td>
<td>E</td>
<td>308/460</td>
<td>3.9</td>
<td>3.8</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ru</td>
<td>H</td>
<td>1</td>
<td>E</td>
<td>338/474</td>
<td>3.9</td>
<td>3.8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ru</td>
<td>H</td>
<td>1</td>
<td>E</td>
<td>350/390</td>
<td>5.3</td>
<td>4.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ru</td>
<td>H</td>
<td>1</td>
<td>E</td>
<td>370/424</td>
<td>5.1</td>
<td>5.0</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ru</td>
<td>H</td>
<td>2</td>
<td>E,E</td>
<td>382/500</td>
<td>4.5</td>
<td>4.6</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

* All values of \(\mu \) are \(\pm 0.3 \times 10^{-18} \text{ esu} \). The uncertainties in the values of \(\alpha \), \(\beta \), and \(\gamma \) are \(\pm 10\% \) of the reported values.

![Energy level diagram for the frontier molecular orbitals of 5 from extended Hückel molecular orbital calculations.](image1)

![Orbital diagrams showing (top) orbital 56, (middle) orbital 52, and (bottom) orbital 51, from extended Hückel molecular orbital calculations on 5.](image2)

of 2 in acetonitrile, there are two bands in the visible region: one at \(\lambda_{max} = 380 \text{ nm (} \epsilon = 29000 \text{ M}^{-1} \text{ cm}^{-1} \); the second at \(\lambda_{max} = 550 \text{ nm (} \epsilon = 8000 \text{ M}^{-1} \text{ cm}^{-1} \). Similar bathochromic shifts are observed for the ruthenocene derivatives, but they are, in general, less pronounced. These changes are best understood in terms of the changes of the molecular orbital picture upon substitution of the Cp with conjugated acceptors. The bonding in ferrocene is well understood (28,29). Eight electrons reside in four strongly bonding orbitals that are largely \(\pi \) ring-orbital in character. Four electrons occupy two bonding orbitals, which provide the \(\text{d}_x^2-\text{y}^2 \) and \(\text{d}_z^2 \) orbitals. The remaining six electrons fill the largely nonbonding MOs, which are essentially the \(\text{d}_{xy}(\text{e}_{g}) \) and the \(\text{d}_{x^2-y^2}(\text{d}_{2g}) \) orbitals of the metal center. Although there remains disagreement on their relative order, \(\text{d}_{xy} \) is generally accepted as the HOMO of ferrocene. The LUMO is a combination of the metal \(\text{d}_{xy} \) and \(\text{d}_{z^2}(\text{e}_{g}) \) orbitals, and above this lie metal Cp antibonding orbitals derived from \(\text{d}_1 \) \(\pi \) orbitals. The low-energy bands in the electronic spectrum of ferrocene are assigned to a \(1\text{A}_{1g} \rightarrow \text{E}_{2g} \) and two \(1\text{A}_{1g} \rightarrow \text{E}_{1g} \) ligand field transitions (28,29). Upon substitution of the Cp with conjugated acceptors, qualitatively one would expect the low-lying \(\pi \) ligand orbitals to shift to lower energy and there would be increased mixing of the ligand orbitals with the metal d orbitals. Extended Hückel molecular orbital calculations on 5 provide insight into the nature of these optical bands and the chemical bonding in substituted metallocenes. Figure 1 shows an energy level scheme for the frontier orbitals, and Figure 2 shows selected orbitals of 5. The HOMO (orbital 53) is almost completely \(\text{d}_{xy} \) in nature, with the next lower energy occupied orbitals (54 and 55) being \(\text{d}_{x^2-y^2} \) and \(\text{d}_{xy} \). These orbitals are essentially nonbonding. Immediately below the d orbitals lie several orbitals (56-60) that are closely spaced in energy and have substantial \(\pi \)-ligand character, with some metal character. Though the extended Hückel calculation is expected to provide a good model for the general localization of orbitals, the calculated orbital energies are very sensitive to the parametrization and are not expected to be more than a very approximate guide to the energies of transitions. The spacing of the occupied orbitals corresponds well with ionization energy data on these materials, so we are reasonably confident of the presence of two significant low-lying occupied molecular orbitals with the localizations shown for orbitals 51 and 52 (Figure 2). The LUMO (orbital 52) is largely localized on the nitro group, and the next highest unfilled orbital (51) has coefficients distributed throughout the \(\pi \) ligand with some metal character. We therefore tentatively assign the lowest energy transition in these systems as a metal (53-55) to ligand (51) CT band and the higher energy transition as being effectively a ligand \(\pi \) (56-60) to \(\pi^* \) (52) transition, with some metal character. Although it is possible that the lowest energy transition may be from orbitals 53-55 to orbital 52, we believe that this is rather unlikely since the overlap between these orbitals is rather small. Electron density is substantially redistributed in both transitions, and therefore both transitions are likely to contribute to \(\beta \). Solvatochromic behavior has been observed for compounds 5 and 6. The lower lying bands are bathochromically shifted about 8-10 nm, and the higher lying bands are shifted somewhat less between \(p \)-dioxane and acetonitrile solutions, indicative of increased polarity.

in the Franck-Condon excited state. The π→π* CT transition is analogous to the CT transition in donor/acceptor-substituted benzenes where electron densities move from a filled, bonding π orbital of benzene perturbed by the donor (here the iron atom) to an empty low-lying orbital of the substituent. The lowest energy MLCT transition is fundamentally different because an electron almost completely localized in one orbital is transferred upon excitation. The donated electron density involved in both charge-transfer (CT) bands depends strongly on the acceptor strength of the metal center, and it is not valid to consider the metal center as a counterion merely providing a full electron to form a five-member aromatic Cp anion. We expect the higher energy band to be more sensitive to variations in the extended π system and the lower energy band to be more sensitive to changes at the metal center. With compound 5 as a reference, pentamethyl substitution of one ring leads to 36- and 10-nm bathochromic shifts of the lower and higher energy bands, respectively (Figure 3). Replacement of iron by ruthenium lowers the energy of the nonbonding d orbitals, thus increasing the metal's oxidation potential and lowering its donating strength. As expected, the lower energy band is hypsochromically shifted by 106 nm but the higher energy band is only shifted by 6 nm. In contrast, the higher energy band of (E,E)-1,2-ferrocenyl-4-(4-nitrophenyl)butadiene (12) is shifted bathochromically (26 nm) relative to 5 and the lower energy band shifts slightly (4 nm) (Figure 3). Variation of the acceptor strength affects both the π→π* CT and the MLCT transition, as expected (see compounds 7 and 9 in Figure 3).

Compounds 3 and 4 show somewhat larger dipole moments but substantially lower β values compared to their benzene analogues. The dipole moment of the ruthenium compound 4 is particularly high, given a value of only 4.0 D for nitrobenzene. Two independent factors could contribute to the large dipole moment of this compound. First, the electron-releasing Cp* enhances the donor strength of the metal center and therefore to the acceptor-substituted Cp as well. The importance of this effect is not clear for compounds 5 vs 6 and 10 vs 11, as they have the same dipole moments within experimental error. The second factor is the greater orbital extent of ruthenium 4d vs iron 3d orbitals, which could perhaps stabilize more charge transfer in the ground state (10 vs 5 and 11 vs 6). This latter rationale has been used to explain the increased stability of α-ruthenocenyl cations relative to α-ferrocenyl cations.29

The low β values for compounds 3 and 4 may be due to the poorly defined CT axes since the metal–ring bond is perpendicular to the ring-substituent bond. Other derivatives (Table II) that have well-defined charge-transfer axes along the (4-nitrophenyl)vinyl group show respectable nonlinearities, in comparison to roughly analogous organic compounds, e.g. nitrostilbene (β = 9.1 × 10⁻³⁰ esu), 4-methoxy-4’-nitrostilbene (β = 2.9 × 10⁻³⁰ esu), and 4-(dimethylamino)-4’-nitrostilbene (β = 7.5 × 10⁻³⁰ esu).30 Since these compounds have long-wavelength absorption bands, the measured nonlinearity has a small dispersive enhancement. Compound 1 (Z isomer) is found to be less nonlinear than compound 5 (E isomer); likewise, 8 has a smaller β than 7. It is expected that the Z isomer would exhibit lower β for two reasons: (1) The steric interactions between the Cp and benzene ortho hydrogens preclude the two rings being coplanar (this was seen in the crystal structure of 11a), resulting in a diminution of coupling between the donor and the acceptor; (2) the through-space distance between the donor and the acceptor is less in the Z isomer than in the E isomer; therefore, the change in dipole moment per unit charge separation will be less. Compound 1 crystallizes in space group P2121d; in this space group, phase-matched SHG will be optimized when the angle between the largest tensor component of β and the polar crystallographic axis is 54.7°.31 The modest value of β for 1 (β = 13 × 10⁻³⁰ esu) suggests that the herringbone pattern formed by the crystallographically related Fe to nitro vectors in the solid state is largely responsible for the relatively large observed powder SHG value.11a

Recently, Zerner intermediate neglect of differential overlap (ZINDO) calculations were performed on several of the compounds in this study and the calculated values of β were in excellent agreement with those EFISH-determined values. Interestingly, the authors suggest that only the π→π* CT transition contributes to the observed nonlinearity.25 If this is the case, one might not expect structural changes that only affect the characteristics of the lower energy MLCT band to have a substantial effect on the magnitude of the observed nonlinearity. Yet the permethylated compounds 6 (Figure 3) and 11 exhibit a significant increase in nonlinearity as compared to their Cp analogues, 5 and 10. These trends may result from the destabilization of the high-lying occupied orbitals as evidenced by the large spectral red shift of the MLCT transition and lowered oxidation potentials.30 Furthermore, despite the fact that the π→π* CT bands of the ruthenium compounds 10 (Figure 3) and 11 shift 6 nm or less relative to those of their iron analogues, 5 and 6, the former compounds are less nonlinear than their iron counterparts. These observations are consistent with the higher energy MLCT transitions and oxidation potential36 of ruthenocene compounds (vs ferrocene compounds). Thus, these structural modifications, which have a large effect on the MLCT transition and a much smaller effect on the higher energy π→π* CT transition, appear to influence the magnitude of the observed nonlinearity. In agreement with structural trends observed in stilbene derivatives, the effect of increased conjugation length is dramatic, with compound 12 exhibiting significantly higher β than 5 (Figure 3). The changes in β as a function of acceptor strength parallel those observed for donor/acceptor-substituted stilbenes, with stronger acceptors leading to higher β. For a given metalloocene fragment, β appears to correlate with the oxidation potential of the complex.35 This is reasonable, since increasing the strength of the acceptor is expected to both increase the nonlinearity of the complex and decrease the electron density of the metal center in the ground state. However when the acceptor (p-nitrophenyl) is kept constant and the metalloocene fragment is varied, β scales inversely with the redox potential of the complex. This suggests that the energy of the filled metal orbitals correlates with β.

Our conclusions may be summarized as follows: (1) Structural variations that affect the π→π* CT and the MLCT transitions lead to changes in β. Since both transitions appear to make substantial contributions to the observed nonlinearity, it is not appropriate to use the two-state model, when considering metalloocenes, such as those discussed here. The energy and extinction

Second-Order Optical Nonlinearities

We believe that poor coupling between the metal center and the substrate because of the π geometry most likely lowers the effectiveness of the metal center as a donor. We therefore suggest that future studies of organometallic systems for both second- and third-order hyperpolarizabilities should focus perhaps introducing some metal to incorporating the metal in the same plane as the third-order hyperpolarizabilities should focus on improving the coupling between the metal center and the organic fragment by incorporating the metal in the same plane as the π system and perhaps introducing some metal to form a multiple-bond character.

Experimental Section

Syntheses. The compounds 1,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 Fe(acac)3,22 (CH3)2Ru(C5H4CHO),25 (C5H5)2Ru(C5H4CN)3CF3SO3,29 NaC8H4CHO,22 and LiC8H4NO2,24 were prepared according to literature procedures. Compound 3 was obtained from Aldrich Chemical Co. and was used without further purification.

To 1.29 g of Fe(acac)3 (0.08 mol) in 30 mL of tetrahydrofuran (THF) was added a slurry of 0.672 g (4.74 mmol) of LiCp* in 30 mL of THF. The mixture was stirred for 15 min, and 0.550 g (4.74 mmol) of NaCp*-CHO in 20 mL of THF was added. The mixture was stirred overnight and then filtered. After the solid was washed with ether, the solvent was removed. The residue was extracted with CH2Cl2 and the mixture filtered. The solvent was removed, and 15 mL of ethyl alcohol was added to this mixture. A second addition of 1.29 g (4.73 mmol) of (O)(OC2H5)2CH2-p-C8H4NO2 in 10 mL of ethanol was added. The resulting mixture was cooled in an ice bath, and freshly prepared NaOC2H5 from 0.110 g of Na in 10 mL of ethanol was added. The mixture was then warmed to room temperature and stirred for 2 days. The solvent was removed and the residue chromatographed on silica gel eluted with 50% CHCl3/hexane to give 0.13 g of the product. Anal. Calcd for C16H20OFe: C, 58.20; H, 6.12. Found: C, 58.17; H, 6.08. IH NMR (CD2Cl2): δ 8.93 (d, J = 5.53 Hz, 2 H), 5.53 (s, 1 H), 5.53 (d, J = 1.7 Hz, 2 H), 4.53 (m, 2 H), 4.52 (m, 2 H), 4.52 (m, 2 H), 4.52 (m, 2 H), 1.86 (s, 15 H). SHG was inactive at 1.0 μm.

In a separate experiment, treatment of Fe(acac)3 with LiCp* and NaCp*-CHO gave a 2:1 mixture of Cp*FeFe-CHO and (Cp3)2Fe. To 0.60 g (2.36 mmol) of Fe(acac)3 in 20 mL of THF was added 1.35 g (5.31 mmol) of LiCp* in 30 mL of THF. After the mixture was stirred for 2 days, the mixture was filtered, and the solvent was evaporated. The residue was chromatographed on silica gel eluted with 50% CHCl3/hexane to give 0.345 g of the product. Anal. Calcd for C23H25N02Fe: C, 68.50; H, 6.25. Found: C, 68.07, 67.82; H, 6.30, 6.28. IH NMR (CD2Cl2): δ 8.16 (d, J = 8.8 Hz, 2 H), 7.55 (d, J = 8.8 Hz, 2 H), 6.96 (d, J = 16.1 Hz, 1 H), 6.63 (d, J = 16.0 Hz, 1 H), 4.00 (m, 4 H), 1.83 (s, 15 H). SHG was inactive at 1.9 μm.

Preparation of 11. To 0.316 g (0.96 mmol) of Cp*Ru(CpCHO) in 15 mL of THF was added 0.260 g (0.95 mmol) of (O)(OC2H5)2CH2-p-C8H4NO2. The mixture was cooled in an ice bath, and freshly prepared NaCp*-CHO from 24.9 mg of Na in 5 mL of ethanol was added. The resulting mixture was stirred overnight and the solvent removed. The residue was chromatographed on silica gel eluted with CHCl3 to give 0.245 g of the product as an orange-yellow solid. Anal. Calcd for C18H18Ru2N2O2: C, 61.39; H, 5.62. Found: C, 61.70; H, 5.70. 1H NMR (CD2Cl2): δ 8.14 (m, 2 H), 7.5 (m, 2 H), 6.8 (d, J = 16.1 Hz, 1 H), 6.5 (d, J = 16 Hz, 1 H), 4.5 (s, J = 5.53 Hz, 2 H), 4.36 (s, J = 1.7 Hz, 2 H), 1.8 (s, 15 H). SHG was inactive at 1.0 μm.

Preparation of 4. To 0.300 g (0.2767 mmol) of [Cp*Ru(CpCHO)] in 15 mL of THF at -78 °C was added 0.150 g (1.28 mmol) of LiCp*-NO2. The mixture was warmed to room temperature and stirred overnight under nitrogen. The solvent was removed, and the residue was chromatographed on silica gel eluted with 50% CHCl3/hexane to give 0.13 g of the desired product. Anal. Calcd for C18H18NO2Ru: C, 52.01; H, 5.53. Found: C, 52.22; H, 5.68. 1H NMR (CD2Cl2): δ 5.15 (m, 2 H), 4.5 (m, 2 H), 1.8 (s, 15 H). SHG was inactive at 1.0 μm.

Preparation of 10. To 0.500 g (1.93 mmol) of CpRu(CpCHO) and 0.527 g (1.93 mmol) of (O)(OC2H5)2CH2-p-C8H4NO2 in 10 mL of ethanol, cooled in an ice bath, was added freshly prepared NaCp*-CHO from 45 mg of Na in 2 mL of ethanol. After the mixture was stirred overnight, the product was filtered off and washed with ethanol. A yield of 0.63 g was obtained (1.66 mmol, 86%). Anal. Calcd for C18H18NO2Ru: C, 57.14; H, 4.00. Found: C, 56.91; H, 4.22. 1H NMR (CD2Cl2): δ 8.15 (m, 2 H), 7.5 (m, 2 H), 7.0 (d, J = 16.1 Hz, 1 H), 6.7 (d, J = 16.1 Hz, 1 H), 1.86 (s, 15 H). SHG was inactive at 1.0 μm.

Preparation of Cp*Ru=CpCHO. To 0.614 g (1.21 mmol) of [Cp*Ru(CH2C5H4)3]CF3SO3 in 15 mL of THF was added 0.154 g (1.33 mmol) of NaCp*-CHO in 10 mL of THF. The mixture was stirred overnight. The solvent was then removed and the residue chromatographed on silica gel eluted with CHCl3. A yellow band was collected to give 0.374 g (1.13 mmol, 93.8% of yield). 1H NMR (CD2Cl2): δ 8.93 (s, 1 H), 4.52 (m, 2 H), 4.63 (m, 2 H), 1.86 (s, 15 H). Anal. Calcd for C21H29O2Ru: C, 58.34, H, 6.12. Found: C, 58.08; H, 6.01. IR (KBr): 1677 cm⁻¹.
solution, the solution nonlinear susceptibilities can be computed. With the measured solution properties, following the full Onsager local field model for both static and optical fields and taking the infinite-dilution limit for all concentration-dependent quantities, we can calculate the relevant molecular properties including the dipole moment, μ, the low-frequency linear polarizability, α, the hyperpolarizability, β, and the second hyperpolarizability, γ. The effective refractive indices for the solute molecule in solution, as required by the Onsager model, are deduced from the solute-specific volumes and high-frequency polarizabilities. The vectorial component, β, of the molecular hyperpolarizability tensor along the dipole moment is calculated according to $\beta_{THG} = \gamma + \mu I/5kT$ where $\gamma + \mu$, denoting a purely electronic and a hybrid vibrational contribution, is scaled with γ_{THG}. Where optical absorptions do not permit THG measurements, the electronic and vibrational contribution is taken to be 10%, which is a typical value found for the more quadratically nonlinear molecules.

Extended Hückel Calculations. Extended Hückel molecular orbital calculations with charge iteration were carried out for 5. The conjugated ligand was assumed to be planar with distances and bond angles taken from the crystal structure determination of 1. Parameters used for the orbitals are given in Table III.

Acknowledgment. We thank H. Jones (du Pont), T. Hunt (du Pont), and B. G. Tiemann (JPL) for expert technical assistance. We also thank Dr. Joseph Perry and Bruce Tiemann (JPL) and Gerald R. Meredith (du Pont) for helpful discussions throughout the preparation of this paper. We also thank Dr. Paul Fagan (du Pont) for samples of [(C$_6$(CH$_3$)$_5$)Ru(CH$_3$CN)$_3$]CF$_3$SO$_3$ and Dr. Juan Manriquez (du Pont) for samples of Fe(acac)$_3$. The helpful comments of the reviewers are also gratefully acknowledged. The research described in this paper was performed, in part, by the Jet Propulsion Laboratory, California Institute of Technology, at its Center for Space Microelectronics Technology, which is supported by the Strategic Defense Initiative Organization, Innovative Science, and Technology Office through an agreement with the National Aeronautics and Space Administration.

Supplementary Material Available: For compound 4, a textual presentation of the crystal data, data collection and treatment, and structure solution and refinement, Figures 1 and 2, showing an ORTEP drawing and a packing diagram with atom numbering, and tables of fractional coordinates, anisotropic thermal parameters, and complete distances and angles (5 pages). Ordering information is given on any current masthead page.

Table III. Parameters Used in the Extended Hückel Calculations

<table>
<thead>
<tr>
<th>Atom</th>
<th>orbital</th>
<th>exponents (β^*)</th>
<th>energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1s</td>
<td>1.300</td>
<td>-13.6 (-13.22 to -13.70)</td>
</tr>
<tr>
<td>C</td>
<td>2s</td>
<td>1.625</td>
<td>-21.40 (-20.29 to -21.72)</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>1.625</td>
<td>-11.40 (-10.49 to -11.07)</td>
</tr>
<tr>
<td>N</td>
<td>2s</td>
<td>1.950</td>
<td>-26.00 (-28.91)</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>1.950</td>
<td>-13.40 (-12.12)</td>
</tr>
<tr>
<td>O</td>
<td>2s</td>
<td>2.275</td>
<td>-32.30 (-28.71)</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>2.275</td>
<td>-14.80 (-12.12)</td>
</tr>
<tr>
<td>Fe</td>
<td>3d</td>
<td>5.35 (0.5505)</td>
<td>-12.6 (-10.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00 (0.6260)</td>
<td></td>
</tr>
</tbody>
</table>

*Double-β values were used for d orbitals. Coefficients are given in parentheses.

For the energies after charge iteration are given in parentheses. For C and H the range of energies is given.

References:
