Oscillator strength (f): quantum mechanical model

- For an electronic transition to occur an oscillating dipole must be induced by interaction of the molecules electric field with electromagnetic radiation.
- In fact both ε and k^0 can be related to the transition dipole moment (μ_{ge})
- If two equal and opposite electrical charges (e) are separated by a vectorial distance (r), a dipole moment (μ) of magnitude equal to er is created.

 $\mu = e \mathbf{r}$ (e = electron charge, \mathbf{r} = extent of charge displacement)

• The magnitude of charge separation, as the electron density is redistributed in an electronically excited state, is determined by the *polarizability* (α) of the electron cloud which is defined by the transition dipole moment (μ_{ge})

$$\alpha = \mu_{\rm ge} / E$$
 (*E* = electrical force)
 $\mu_{\rm ge} = e r$

• The magnitude of the oscillator strength (*f*) for an electronic transition is proportional to the square of the transition dipole moment produced by the action of electromagnetic radiation on an electric dipole.

$$f \propto \mu_{\rm ge}^2$$
 = (e r)²

$$f \propto \mu_{ge}^{2}$$

$$f \propto \varepsilon_{max} \Delta \bar{\nu}_{fwhm}$$

$$f \propto k_{e}^{0} (\bar{\nu}^{2})^{-1}$$

$$f_{obs} = observed oscillator strength$$

$$f_{max} = ideal oscillator strength (~1)$$

$$f_{e} = orbital configuration factor$$

$$f_{v} = vibrational configuration factor$$

$$f_{s} = spin configuration factor$$

- There are two major contributions to the electronic factor f_{e} :
 - ➤ Poor overlap: weak mixing of electronic wavefunctions, e.g. <n $| π^* >$, due to poor spatial overlap of orbitals involved in the electronic transition, e.g. HOMO→LUMO.
 - Symmetry forbidden: even if significant spatial overlap of orbitals exists, the resonant photon needs to induce a large transition dipole moment. If the symmetry of source and destination orbitals contributing to the electronic transition is similar there is a negligible transition dipole moment resulting in a weak oscillator strength and molar absorption coefficient.
- For example, if a $\pi \rightarrow \pi^*$ transition (strong MO mixing) displays a weak electronic transition it is likely offset by a similar symmetry of HOMO and LUMO transitions.

$$f \propto \mu_{ge}^{2} \qquad f_{obs} = f_{max} (f_{e} \ f_{v} \ f_{s})$$

$$f \propto \varepsilon_{max} \Delta \bar{\nu}_{fwhm} \qquad \varepsilon_{max} \propto \frac{f}{\Delta \bar{\nu}_{fwhm}}$$

$$f \propto k_{e}^{0} (\bar{\nu}^{2})^{-1} \qquad k_{e}^{0} \propto f \ \bar{\nu}^{2}$$

- The rate of emission k_e^0 is dependent upon the ε_{max} and the square of the frequency of the electronic transition.
- For example, as we see in the following slide, 1,4-dimethylbenzene and pyrene possess similar values of ε_{max} (500 700 M⁻¹ cm⁻¹) but they absorb and emit at different wavelengths.
- As a result their oscillator strengths *f* and emission decay rate constants differ significantly.
- Assuming comparable *fwhm* this trend is mostly dependent upon the wavelength of emission.

$$f \propto \mu_{ge}^{2} \qquad f_{obs} = f_{max} (f_{e} \ f_{v} \ f_{s}$$

$$f \propto \varepsilon_{max} \Delta \bar{\nu}_{fwhm} \qquad \varepsilon_{max} \propto \frac{f}{\Delta \bar{\nu}_{fwhm}}$$

$$f \propto k_{e}^{0} (\bar{\nu}^{2})^{-1} \qquad k_{e}^{0} \propto f \ \bar{\nu}^{2}$$

)

	$k_{\rm e}({\rm s}^{-1})$	example	transition	$\epsilon_{\rm max}$	f	$v_{\rm max}({\rm cm}^{-1})$
	10 ⁹	<i>p</i> -terphenyl	$S_1(\pi,\pi^*) \rightarrow S_0$	3 x 10 ⁴	1	30,000
G .	108	perylene	$S_1(\pi,\pi^*) \rightarrow S_0$	$4 \ge 10^4$	10-1	22,850
Spin allowed	107	1,4-dimethylbenzene	$\mathbf{S}_1(\pi,\pi^*) \rightarrow \mathbf{S}_0$	$7 \ge 10^2$	10-2	36,000
	106	pyrene	$\mathbf{S}_1(\pi,\pi^*) \rightarrow \mathbf{S}_0$	$5 \ge 10^2$	10-3	26,850
	10 ⁵	acetone	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	10	10-4	30,000
Spin forbidden	104	xanthone	$\mathbf{T}_{1}(\mathbf{n}, \pi^{*}) \rightarrow \mathbf{S}_{0}$	1	10-5	15,000
	10 ³	acetone	$\mathbf{T}_{1}(\mathbf{n}, \pi^{*}) \rightarrow \mathbf{S}_{0}$	10-1	10-6	27,000
	10 ²	1-bromonapthalene	$\mathrm{T}_{1}(\pi,\pi^{*}) \rightarrow \mathrm{S}_{0}$	10-2	10-7	20,000
	10	1-chloronaphtalene	$\mathrm{T}_{1}(\pi,\pi^{*}) \rightarrow \mathrm{S}_{0}$	10-3	10-8	20,600
	10-1	naphtalene	$\mathrm{T}_{1}(\pi,\pi^{*}) \rightarrow \mathrm{S}_{0}$	10-4	10-9	21,300

Representative examples of ε_{max} and *f* values for prototype electronic transitions.

Benchmarks for fully allowed and weakly allowed spin allowed transitions of organic chromophores.

 $f \propto \mu_{\rm ge}^2$

 $f \propto \varepsilon_{\max} \Delta \bar{\nu}_{fwhm}$ $f \propto k_{\rm e}^0 \left(\bar{\nu}^2 \right)^{-1}$

 $f_{\text{obs}} = f_{\text{max}} \left(f_{\text{e}} f_{\text{v}} f_{\text{s}} \right)$ $\mathcal{E}_{\max} \propto \frac{f}{f}$

max
$$\propto \overline{\Delta \overline{\nu}_{fwhm}}$$

$$k_{\rm e}^0 \propto f \ \bar{\nu}^2$$

	$k_{\rm e}({\rm s}^{-1})$	example	transition	$\epsilon_{ m max}$	f	$V_{\rm max}(\rm cm^{-1})$
Spin allowed	109	<i>p</i> -terphenyl	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	3 x 10 ⁴	1	30,000
	108	perylene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	$4 \ge 10^4$	10-1	22,850
	107	1,4-dimethylbenzene	$\mathbf{S}_1(\pi,\pi^*) \rightarrow \mathbf{S}_0$	$7 \ge 10^2$	10-2	36,000
	106	pyrene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	$5 \ge 10^2$	10-3	26,850
	10 ⁵	acetone	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	10	10-4	30,000
Spin forbidden	104	xanthone	$\mathbf{T}_{1}(\mathbf{n}, \pi^{*}) \rightarrow \mathbf{S}_{0}$	1	10-5	15,000
	10 ³	acetone	$\mathbf{T}_{1}(\mathbf{n},\pi^{*}) \rightarrow \mathbf{S}_{0}$	10-1	10-6	27,000
	10 ²	1-bromonapthalene	$\mathbf{T}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	10-2	10-7	20,000
	10	1-chloronaphtalene	$\mathrm{T}_{1}(\pi,\pi^{*}) \rightarrow \mathrm{S}_{0}$	10-3	10-8	20,600
	10-1	naphtalene	$\mathbf{T}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	10-4	10-9	21,300

Representative examples of ε_{max} and *f* values for prototype electronic transitions.

$$f \propto \mu_{ge}^{2} \qquad f_{obs} = f_{max} (f_{e} \ f_{v} \ f_{s})$$

$$f \propto \varepsilon_{max} \Delta \bar{\nu}_{fwhm} \qquad \varepsilon_{max} \propto \frac{f}{\Delta \bar{\nu}_{fwhm}}$$

$$f \propto k_{e}^{0} (\bar{\nu}^{2})^{-1} \qquad k_{e}^{0} \propto f \ \bar{\nu}^{2}$$

- If we ignore f_v (i.e. for rigid molecules with little distortion of excited state PECs) and f_s the k_{obs} is ultimately determined by f_e
- For rigid molecules k_{obs} is thus determined by the spatial overlap of contributing MOs and their symmetries.
- For molecules with distorted excited state PECs f_v becomes more important due to Franck-Condon factors.

- As pyrene is a rigid planar organic system ٠ with little distortion of excited state PECs k_{obs} is ultimately determined by the spatial overlap of contributing MOs and their symmetries.
- Spatial overlap of the HOMO and LUMO ٠ appears to be sufficient such that the weak intensity of the $S_0 \rightarrow S_1$ transition must be due to a low transition dipole moment due to the analogous symmetries of the HOMO and LUMO wavefunctions.

- The HOMO and LUMO+1 orbitals appears to have a greater spatial overlap of wavefunctions.
- Here a larger transition dipole moment is anticipated due to the distortion in electron density distribution across the molecular framework. Sufficient enough to realize an intense $S_0 \rightarrow S_2$ electronic transition.

HOMO

- BODIPY is another example of a rigid planar organic system with little distortion of excited state PECs (evident from its small Stoke's shift)
- Spatial overlap of the HOMO and LUMO appears to be sufficient to realize an intense $S_0 \rightarrow S_1$ electronic transition.
- Notice how the electron density is redistributed from HOMO to LUMO contributing to an oscillating transition dipole.

- Curcumin-BF₂ is an example of a semi-rigid planar organic system with significant distortion of excited state PECs (evident from its slarger Stoke's shift relative to BODIPY)
- Spatial overlap of the HOMO and LUMO appears to be sufficient to realize an intense $S_0 \rightarrow S_1$ electronic transition.
- Notice again how the electron density is redistributed from HOMO to LUMO contributing to an oscillating transition dipole.

• Empirically, a number of criteria have been developed that allow an orbital configuration change to be identified from characteristics of absorption and emission spectra:

property	$n ightarrow \pi^*$		$\pi ightarrow \pi^*$		
	$S_0 \rightarrow S_1$	$\mathrm{S}_{0} \rightarrow \mathrm{T}_{1}$	$S_0 \rightarrow S_1$	$S_0 \rightarrow T_1$	
ϵ_{\max}	< 200	> 10 ⁻²	> 1000	< 10 ⁻³	
$k_{\rm e} ({\rm s}^{-1})$	$10^5 - 10^6$	$10^3 - 10^2$	$10^7 - 10^8$	1 - 10-1	
solvatochromism	negative		positive		
Vibrational structure	localized		delocalized		
Heavy atom effect	none		yes		
$\Delta E_{ m ST}$	< 10 kcal mol ⁻¹		> 20 kcal mol ⁻¹		
polarization of $\mu_{\rm ge}$	\perp			\perp	
Φ _{em} (77 K)	< 0.01	~ 0.5	0.05 - 1.0	< 0.5	
E_{T}	< 75	< 65	variable		

Quantum yield for emission (Φ_e)

- Always recall the Jablosnksi diagram when "bookkeeping" of state electronic configurations and competing photochemical processes.
- In an electronic excited state there is competition between radiative decay and nonradiative decay processes.
- For simplicity, let's assume for now that radiative decay is the only decay process.
- In this case $k_{\rm fl}^0$ represents the sole decay rate constant.
- By definition, the lifetime of an excited state is equal to the reciprocal of the rate of deactivation of the state.

$$\tau^0 = \frac{1}{k_{\rm fl}^0}$$

 τ^0 = singlet radiative lifetime in absence of non-radiative processes (s)

 $k_{\rm fl}^0$ = fluorescence rate constant (s⁻¹)

Quantum yield for emission (Φ_e)

- The **absolute quantum yield** (Φ_{e}) is an important experimental parameter containing useful information relating the structure and dynamics of electronically excited states.
- Φ_{e} is directly proportional to the emission rate constant (k_{e}^{o}) and inversely proportional to the rate of any deactivating non-radiative processes ($\sum k_{nr}$)

$$\Phi_{\rm e} \propto \frac{k_e^0}{k_e^0 + \sum k_i}$$

- Invoking Kasha's rule, whether emission is observed from an excited state molecule is determined by the quantum yields of fluorescence and phosphorescence.
- Although emission can be observed for many chromophores in solution at room temperature it is very common to record emission spectra at 77 K in a frozen glass to minimize $\sum k_{nr}$ via prevention of diffusion controlled bimolecular quenching processes and vibrational relaxation.
- Even under these conditions it is rare to observe a Φ_e of unity.

 $\Phi_{\rm f}$ = no. of photons emitted / no. of photons absorbed

• Fluorescence quantum yields (Φ_f) are calculated using *steady state* methods by *actinometry*:

Typically, in de-aerated, optically dilute solutions fluorescence spectra of both the actinometer (ref) and sample (s) are recorded following *identical monochromatic excitation* of uniform intensity

$$\Phi_{\rm f} = (A_{\rm ref}/A_{\rm s})(I_{\rm s}/I_{\rm ref})(\eta_{\rm s}/\eta_{\rm ref})^2 \Phi_{\rm ref}$$

where A is the absorbance at the excitation wavelength, I is the integrated emission area and η is the solvent refractive index.

 If an actinometer is used which allows use of the same solvent this equation reduces to

$$\Phi_{\rm f} = (A_{\rm ref}/A_{\rm s})(I_{\rm s}/I_{\rm ref})\Phi_{\rm ref}$$

Relating $k_{\rm fl}$ and $\Phi_{\rm fl}$

$${}^{1}\tau_{0} = rac{1}{k_{\mathrm{fl}}} \qquad k_{\mathrm{fl}} = rac{1}{{}^{1}\tau_{0}}$$

$${}^{1}\tau = \frac{1}{k_{\rm fl} + k_{\rm ic} + k_{\rm isc}} = \frac{1}{k_{\rm total}}$$
$$k_{\rm total} = k_{\rm fl} + k_{\rm ic} + k_{\rm isc} = \frac{1}{{}^{1}\tau}$$

 $τ_{0} = \text{singlet radiative lifetime in absence}$ of non-radiative processes (s)¹τ = singlet radiative lifetime (s) $<math>k_{\text{fl}} = \text{fluorescence rate constant (s^{-1})}$ $k_{\text{ic}} = \text{internal conversion rate constant (s^{-1})}$ $k_{\text{isc}} = \text{intersystem crossing rate constant (s^{-1})}$ $k_{\text{nr}} = \text{non-radiative rate constant (}k_{\text{ic}} + k_{\text{isc}}; s^{-1})$ $Φ_{\text{fl}} = \text{fluorescence quantum yield}$

$$\Phi_{\rm fl} = \frac{{}^{1}\tau}{{}^{1}\tau_{0}} = \frac{k_{\rm fl}}{k_{\rm total}} = \frac{k_{\rm fl}}{k_{\rm fl} + k_{\rm ic} + k_{\rm isc}} = \frac{k_{\rm fl}}{k_{\rm fl} + k_{\rm nr}}$$

$$\Phi_{\rm fl} = \frac{k_{\rm fl}}{k_{\rm fl} + k_{\rm nr}}$$

- There are two limiting situations:
 - $k_{\rm fl} >> k_{\rm nr}$ in which case $\Phi_{\rm fl} \simeq 1.0$
 - $k_{\rm nr} >> k_{\rm fl}$ in which case $\Phi_{\rm fl} \sim k_{\rm fl} / k_{\rm nr} \sim 0$

Radiative lifetimes

$$\tau_0 \approx \frac{10^{-4}}{\varepsilon_{\rm max}}$$

	<i>€</i> _{max} (L mol ⁻¹ cm ⁻¹)	τ_0 (s)
$^{1}(\pi \rightarrow \pi^{*})$	10 ² - 10 ⁵	ns - µs
¹(n→π*)	10 - 10 ²	μs - ms
³ (π→π*)	10-4 - 10	ms - s
³ (n→π*)	$10 - 10^2$	μs - ms

Structural influences on $\Phi_{\rm fl}$

- 1. Most rigid aromatic hydrocarbons and their derivatives possess measurable, but variable, fluorescence quantum yields ($1.0 > \Phi_{fl} < 0.01$) even at 77 K.
- 2. Low values of Φ_{fl} are commonly observed for systems with vibrational freedom, for example the S₁ state of stilbene undergoes efficient cis-trans isomerization and internal conversion via vibrational relaxation.
- 3. Substitution with heavy elements results in enhanced spin-orbit coupling and reduced Φ_{fl} in the order $\Phi_{fl}^{\ H} > \Phi_{fl}^{\ F} > \Phi_{fl}^{\ Cl} > \Phi_{fl}^{\ Br} > \Phi_{fl}^{\ l}$
- 4. Substitution of an aromatic C-H bond with a carbonyl functionality generally results in a decreased Φ_{fl} due to enhanced intersystem crossing to the T₁ state.
- 5. Molecular rigidity (due to environmental, steric or covalent constraints) prohibits vibrational motion and increases $\Phi_{\rm fl}$
- 6. For rigid organic molecules, internal conversion does not compete effectively with fluorescence decay or intersystem crossing.
- 7. In some cases, e.g. benzene, naphthalene, pyrene, $S_0 \rightarrow S_1$ transitions have low ε_{max} due to weak μ_{ge} (symmetry forbidden) resulting in low relatively weak fluorescence.
- 8. In bromoperylene and pyrene-3-carboxaldehyde ΔE_{ST} is sufficiently large to inhibit *isc* hence there exception to the above trends.

Compound	Transition	$\epsilon_{max} (M^{-1} cm^{-1})$	$k_{\rm fl}({\rm s}^{-1})$	$k_{\rm nr}({\rm s}^{-1})$	$\Phi_{ m fl}$
benzene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	250	2 x 10 ⁶	107	0.2
naphtalene	$\mathbf{S}_1(\pi,\pi^*) \rightarrow \mathbf{S}_0$	270	2 x 10 ⁶	5 x 10 ⁶	0.2
anthracene	$S_1(\pi,\pi^*) \rightarrow S_0$	8,500	5 x 10 ⁷	5 x 10 ⁷	0.4
9,10-diphenylanthracene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	12,600	$5 \ge 10^8$	107	1.0
pyrene	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	510	106	10 ⁵	0.7
triphenylene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	355	$2 \ge 10^{6}$	107	0.1
perylene	$S_1(\pi,\pi^*) \rightarrow S_0$	39,500	108	107	1.0
stilbene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	24,000	108	109	0.05
1-chloronaphtalene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	300	106	5 x 10 ⁸	0.05
1-bromonaphtalene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	300	106	109	0.002
1-iodonaphtalene	$S_1(\pi,\pi^*) \rightarrow S_0$	300	106	1010	0
benzophenone	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	200	106	1011	0
acetone	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	20	10 ⁵	109	0.001
perfluoroacetone	$\mathbf{S}_1(\mathbf{n}, \pi^*) \rightarrow \mathbf{S}_0$	20	10 ⁵	107	0.1
3-bromoperylene	$\mathbf{S}_{1}(\pi,\pi^{*}) \rightarrow \mathbf{S}_{0}$	40,000	108	106	1.0
pyrene-3-carboxaldehyde	$S_1(\pi,\pi^*) \rightarrow S_0$	70,000	108	108	0.25

Molecular rigidity and $\Phi_{\rm fl}$

Compound	Φ _{fl} (298 K)	$\Phi_{\rm fl}$ (77 K)
3	0.05	0.75
4	0	0.75
5	1.0	1.0
6	1.0	1.0

$S_2 \rightarrow S_0$ emission in azulene

- The large S₂→S₁ energy gap precludes internal conversion by minimizing the FC factor for radiationless transitions.
- The opposite is true for the S₁→S₀ transition whose energy gap is so small rapid internal conversion takes place

Spin-orbital coupling and Φ_{fl}

- Substitution with heavy elements results in enhanced spin-orbit coupling and reduced Φ_{fl} in the order $\Phi_{fl}^{H} > \Phi_{fl}^{F} > \Phi_{fl}^{Cl} > \Phi_{fl}^{Br} > \Phi_{fl}^{l}$
- > There is a rapid increase in magnitude of the spin-orbit coupling parameter ζ_{so} as atomic number increases.
- > The spin-orbit coupling parameter ζ_{so} is smaller than the energy of vibrational coupling χ_v for first and second row elements so is only considered for third row and beyond.
- For very heavy atoms, e.g. Pb and Xe, ζ_{so} is greater than χ_v and approaches energies of electronic band gaps.

atom	Atomic number	ζ_{so} (kcal mol ⁻¹)	atom	Atomic number	ζ_{so} (kcal mol ⁻¹)
С	6	0.1	Cl	17	1.7
Ν	7	0.2	Br	35	7.0
0	8	0.4	Ι	53	14.0
F	9	0.7	Xe	54	28
Si	14	0.4	Cs	55	2.4
Р	15	0.7	Pb	82	21
S	16	1.0	Hg	80	18

An MO model for spin-orbital coupling (El Sayed's rule)

- For spin-forbidden electronic transitions oscillator strengths fall in the range of $10^{-5} > f > 10^{-9}$ in contrast to spin-allowed transitions where $1 > f > 10^{-3}$
- *ISC* is generally of a low probability unless heavy atoms are preset to enhance ζ_{SO} or if ΔE_{ST} is small enough to allow mixing of states.
- It is generally found for spin-forbidden transitions that

 $f[S_0 \leftrightarrow T(n,\pi^*)] >> f[S_0 \leftrightarrow T(\pi,\pi^*)]$

which is opposite of the trend observed for spin-allowed transitions.

- Recall that f is composed of $f_{\rm e}$, $f_{\rm v}$ and $f_{\rm SO}$
- In general, for spin-allowed transitions $\varepsilon(\pi,\pi^*) >> \varepsilon(n,\pi^*)$

such that $f_e f_v(\pi, \pi^*) >> f_e f_v(n, \pi^*)$

- Implying for spin-forbidden transitions $f_{SO}(n,\pi^*) >> f_{SO}(\pi,\pi^*)$
- To explain this phenomenon we will consider the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ electronic transitions for formaldehyde and ethylene, respectively.

- The $n \rightarrow \pi^*$ transition of formaldehyde can be understood as an electron transition from a non-bonding O *p*-orbital to a perpendicular C π -orbital; or more simply a $p_x \rightarrow p_y$ transition which has an associated change in orbital angular momentum.
- The change in orbital angular momentum of the $p_x \rightarrow p_y$ transition couples with the spin angular momentum associated with the $\alpha\beta \rightarrow \alpha\alpha$ (or $\alpha\beta \rightarrow \beta\beta$) spin flip.

The only orthogonal orbitals relative to the π →π* transition of ethylene are σ, σ* in nature and are too far removed in energy to couple with the electrons in the S₁ (π →π*) excited state of ethylene.

- Out-of-plane C-H vibrations can increase the orbital overlap integral of σ and π orbitals allowing the typically high energy $\pi \rightarrow \sigma^*$ transition to mix with the lower energy $\pi \rightarrow \pi^*$ transition.
- This out of plane distortion increases spatial overlap and introduces spin-orbital coupling into the pure $\pi \rightarrow \pi^*$ transition increasing intersystem crossing.

Phosphorescence radiative lifetime & rate-constant

$${}^{3}\tau_{0} = \frac{1}{k_{\rm ph}} \qquad k_{\rm ph} = \frac{1}{{}^{3}\tau_{0}}$$

$${}^{3}\tau = \frac{1}{k_{\rm fl} + k_{\rm ic} + k_{\rm isc}} = \frac{1}{k_{\rm total}}$$
$${}^{3}\tau = \frac{1}{k_{\rm ph} + k_{\rm isc}^{\rm TS}}$$

$$\Phi_{\rm ph} = \frac{\Phi_{\rm isc} \, k_{\rm ph}^0}{k_{\rm ph}^0 + k_{\rm isc}}$$

 $τ_0 = \text{singlet radiative lifetime in absence}$ of non-radiative processes (s) $^1 τ = \text{singlet radiative lifetime (s)}$ $k_{fl} = \text{fluorescence rate constant (s⁻¹)}$ $k_{ic} = \text{internal conversion rate constant (s⁻¹)}$ $k_{isc} = \text{intersystem crossing rate constant (s⁻¹)}$ $k_{nr} = \text{non-radiative rate constant (k_{ic} + k_{isc}; s⁻¹)}$ $Φ_{fl} = \text{fluorescence quantum yield}$