
Symmetry Operations and Elements

• The goal for this section of the course is to understand how symmetry arguments can be
applied to solve physical problems of chemical interest.

• To achieve this goal we must identify and catalogue the complete symmetry of a system and
subsequently employ the mathematics of groups to simplify and solve the physical problem
in question.

• A symmetry element is an imaginary geometrical construct about which a symmetry
operation is performedoperation is performed.

• A symmetry operation is a movement of an object about a symmetry element such that the
object's orientation and position before and after the operation are indistinguishable.

A t ti i i t i th bj t i t i l t i t th• A symmetry operation carries every point in the object into an equivalent point or the
identical point.



Point Group Symmetry

• All symmetry elements of a molecule pass through a central point within the molecule.

• The symmetry of a molecule or ion can be described in terms of the complete collection of
symmetry operations it possesses.

• The total number of operations may be as few as one or as many as infinity. The more
symmetry operations a molecule has, the higher its symmetry is.

• Regardless of the number of operations, all will be examples of only five types.



The Identity Operation (E)

• The simplest of all symmetry operations is identity, given the symbol E.

• Every object possesses identity. If it possesses no other symmetry, the object is said to be
asymmetric.

• As an operation, identity does nothing to the molecule. It exists for every object, because the
object itself exists.

• The need for such an operation arises from the mathematical requirements of group theory.

• In addition identity is often the result of carrying out a particular operation successively a• In addition, identity is often the result of carrying out a particular operation successively a
certain number of times,

i.e., if you keep doing the same operation repeatedly, eventually you may bring the object
back to the identical (not simply equivalent) orientation from which was started.

• When identifying the result of multiple or compound symmetry operations they are
designated by their most direct single equivalent.

• Thus, if a series of repeated operations carries the object back to its starting point, the result
would be identified simply as identitywould be identified simply as identity.



The Rotation Operation (C)

• The operation of rotation is designated by the symbol
Cn .

• If a molecule has rotational symmetry Cn , rotation by
2/n = 360°/n brings the object into an equivalent
position.

• The value of n is the order of an n‐fold rotation.

• If the molecule has one or more rotational axes, the
one with the highest value of n is the principal axis of
rotation.

S i C l k i t ti f l MX• Successive C4 clockwise rotations of a planar MX4
molecule about an axis perpendicular to the plane of
the molecule (XA = XB = XC = XD).

• Multiple iterations are designated by a superscript,Multiple iterations are designated by a superscript,

e.g. three successive C4 rotations are identified as C43

• The C42 and C44 operations are preferably identified as
the simpler C and E operations respectivelythe simpler C2 and E operations, respectively.



• There are four other C2 axes in the place of the molecule.

• The C2' and C2" axes of a planar MX4 moleculeThe C2 and C2 axes of a planar MX4 molecule.

• As these twofold axes are not collinear with the principal C4 rotational axis they are
distinguished by adding prime (‘) and double prime (‘’) to their symbols.

• Only two notations are needed for the four axes because both C ’ axes are said to belong to• Only two notations are needed for the four axes, because both C2 axes are said to belong to
the same class, while the two C2’’ axes belong to a separate class.

i.e., both C2’ axes are geometrically equivalent to each other and distinct from C2’’ .

• In listing the complete set of symmetry
operations for a molecule, operations of the
same class are designated by a single notation
preceded by a coefficient indicating the number
of equivalent operations comprising the class.

e.g. for the square planar structure here
discussed of D symmetry the rotationaldiscussed, of D4h symmetry, the rotational
operations grouped by class are

2C4 (C4 and C43), C2 (collinear with C4)

’ d ’’

The C2' and C2" axes of a planar MX4 molecule.

2C2’ , and 2C2’’ .



General Relationships for Cn
Cnn  = E

C2nn = C2 (n = 2, 4, 6, 8…etc.)

Cnm = Cn/m (n/m = 2, 3, 4, 5…etc.)

C n‐1 = CCn = Cn‐1

Cnn+m = Cnm (m < n)

• Every n‐fold rotational axis has n–1 associated operations (excluding Cnn = E).

• Remember, the rotational operation Cnm is preferably identified as the simpler Cn/m
operation wherem/n is an integer value.



The Reflection Operation (σ)

• The operation of reflection defines bilateral symmetry about a plane, called a mirror plane or
reflection plane.

• For every point a distance r along a normal to a mirror plane there exists an equivalent point• For every point a distance r along a normal to a mirror plane there exists an equivalent point
at –r.

Two points, equidistant from a mirror plane σ, related by reflection.

• For a point (x,y,z), reflection across a mirror plane σxy takes the point into (x,y,–z).xy

• Each mirror plane has only one operation associated with it, since σ2 = E.



Horizontal, Vertical, and Dihedral Mirror Planes
• A h plane is defined as perpendicular

to the principal axis of rotation.

• If no principal axis of rotation exists, h
is defined as the plane of the molecule.

• v and d planes are defined so as to
contain a principal axis of rotation and
to be perpendicular to a  planeto be perpendicular to a h plane.

• When both v and d planes occur in
the same system, the distinction
between the types is made by defining
v to contain the greater number of
atoms or to contain a principal axis of a
reference Cartesian coordinate system
(x or y axis).

• Any d planes typically will contain
bond angle bisectors.

• The five mirror planes of a squareThe five mirror planes of a square
planar molecule MX4 are grouped into
three classes (h , 2v , 2d ).



The Inversion Operation ( i )

• The operation of inversion is defined relative to the central point within the molecule,
through which all symmetry elements must pass,

e g typically the origin of the Cartesian coordinate system (x y z = 0 0 0)e.g., typically the origin of the Cartesian coordinate system (x,y,z = 0,0,0).

• If inversion symmetry exists, for every point (x,y,z) there is an equivalent point (–x,–y,–z).

• Molecules or ions that have inversion symmetry are said to be centrosymmetric.

• Each inversion center has only one operation associated with it, since i 2 = E.

Effect of inversion (i) on an octahedral MX6 molecule (XA = XB = XC = XD = XE = XF).



Inversion Center of Staggered Ethane

• Ethane in the staggered configuration. The inversion center is at the midpoint along the C‐C
bond. Hydrogen atoms related by inversion are connected by dotted lines, which intersect aty g y y ,
the inversion center. The two carbon atoms are also related by inversion.



The Improper Rotation Operation (Sn)
• The improper rotation operation Sn is also known as the rotation‐reflection operation and, as

its name suggests, is a compound operation.

• Rotation‐reflection consists of a proper rotation followed by reflection in a plane
perpendicular to the axis of rotation.

• n refers to the improper rotation by 2 / n = 360° / n.

S i t if th t C f ll d b ( i ) b i th bj t t i l t• Sn exists if the movements Cn followed by σh (or vice versa) bring the object to an equivalent
position.

• If both Cn and σh exist, then Sn must exist.

e.g., S4 collinear with C4 in planar MX4.

• Neither Cn nor σh need exist for Sn to exist.

e.g., S4 collinear with C2 in tetrahedral MX4.



A tetrahedral MX4 molecule inscribed in a cube.
A C2 axis, collinear with an S4 axis, passes through
the centers of each pair of opposite cube facesthe centers of each pair of opposite cube faces
and through the center of the molecule.
i.e., each axis bisects one of the M‐X bonds.

S4 improper rotation of a tetrahedral MX4 molecule
(X = X = X = X ) The improper axis is perpendicular(XA = XB = XC = XD). The improper axis is perpendicular
to the page. Rotation is arbitrarily taken in a
clockwise direction. Note that neither C4 nor σh are
genuine symmetry operations of tetrahedral MX4.



• Successive S4 operations on a tetrahedral
MX4 molecule (XA = XB = XC = XD)MX4 molecule (XA = XB = XC = XD).

• Rotations are clockwise, except S4‐1 , which
is equivalent to the clockwise operation S43.

• Successively carrying out two S operations• Successively carrying out two S4 operations
is identical to the result of a single C2
operation about the same axis

i.e., S42 = C2, 4 2

• Similarly, S44 = E .

• Thus, there are only two operations
belonging to this class for the tetrahedralbelonging to this class for the tetrahedral
MX4 molecule (S4 and S43 ) about this axis.

• In the highly symmetric tetrahedral system
there are three equivalent and
indistinguishable S4 axes.

• Consequently, each axes gives rises to two
S4 operations resulting in a class designated

6S (3S 3S 3 )as 6S4 (3S4 + 3S43 ).



Non‐Genuine Sn Operations:

• S1 = σh

• S2 = i



General Relations of Sn

• Equivalences of successive Sn operations:

 If n is even, Snn = En

 If n is odd, Snn = σ and Sn2n = E

 If i S m C m C h d S m C m n h Ifm is even, Snm = Cnm = Cn/m when m < n and Snm = Cnm–n when m > n

 If Sn with even n exists, then Cn/2 exists

 If Sn with odd n exists, then both Cn and σ perpendicular to Cn exist.



Examples
• Find all symmetry elements and operations in the following:



Defining the Coordinate System

• Molecules are conventionally oriented relative to a right‐hand Cartesian coordinate system:

• The following conventions of axis orientation are usually observed:

1. The origin of the coordinate system is located at the central atom or the center of the
molecule.

2. The z axis is collinear with the highest‐order rotational axis (the principal axis). If there
are several highest order rotational axes, z is usually taken as the axis passing throughare several highest order rotational axes, z is usually taken as the axis passing through
the greatest number of atoms.

However, for a tetrahedral molecule, the x, y, and z axes are
defined as collinear with the three C2 axes (collinear with the three S4 axes).



Defining the Coordinate System (contd.)

3. For planar molecules, if the z axis as defined above is perpendicular to the molecular
plane, the x axis lies in the plane of the molecule and passes through the greatest
number of atoms.

If the z axis lies in the plane of the molecule, then the x axis stands perpendicular to the
plane.



Defining the Coordinate System (contd.)

4. For non‐planar molecules, once the z axis has been defined, the x axis is usually chosen
so that the xz plane contains as many atoms as possible. If there are two or more such
planes containing identical sets of atoms, any one may be taken as the xz plane.p g , y y p

Where a decision about the orientation of the x axis cannot be made on this basis, the
distinction between x and y is usually not important or is not generally fixed by
convention.



Combining Symmetry Operations (Multiplication)

• Multiplication of symmetry operations is the successive performance of two or more
operations to achieve an orientation that could be reached by a single operation

2 2e.g., i 2 = E ; S4 S4 = S42 = C2 ; C4 h = S4 etc.

• The order in which successive different symmetry operations are performed can affect the
result.

• Multiplication of symmetry operations is not commutative in general, although certain
combinations may be.

• In writing multiplications of symmetry operation we use a "right‐to‐left" notation:

 BA = X "Doing A then B has the same result as the operation X."

 We cannot assume that reversing the order will have the same result.

 It may be that either BA ≠ AB or BA = AB It may be that either BA ≠ AB or BA = AB.

• Multiplication of symmetry operations is associative:

C(BA) = (CB)A



The order of performing S and σ shown here for a tetrahedral MX molecule affects the resultThe order of performing S4 and σv , shown here for a tetrahedral MX4 molecule, affects the result.
The final positions in each case are not the same, but they are related to each other by C2 .

S4 σv ≠ σv S4 but C2σv S4 = S4 σv



• We will now consider the complete set of symmetry operations for a particular molecule
and determine all the binary combinations of the symmetry operations it possesses.

• The symmetry elements of the CBr2Cl2 molecule are shown below. This molecule has a
tetrahedral geometry

Note: tetrahedral geometry does not automatically imply tetrahedral symmetry !Note: tetrahedral geometry does not automatically imply tetrahedral symmetry !

• The complete set of symmetry operations are E, C2 , v , v‘



Matrix Notation of the Effects of the Operations
• Rather than depict the effect of each operation on the molecule, let us introduce a column

matrix notation to indicate the positions of atoms before and after each operation.

• As the carbon atom is unaffected by any symmetry operation all matrices need only describe
the positions of the bromine and chlorine atoms using a 1x4 column matrixthe positions of the bromine and chlorine atoms using a 1x4 column matrix.

• The symbols [E], [C2], v and [v
’] represent operator matrices.



Multiplication Tables
• All possible binary combinations of symmetry operations can be summarized in a

multiplication table.

• Combination order is "top" then "side"; e.g.,



Multiplication Table for the Operations of CBr2Cl2
• Now let us consider the results for binary combinations of these

operations. For this process we can start to build a multiplication table.

• We will begin with combinations including the identity operation• We will begin with combinations including the identity operation.

• Followed by self combinations

Th h th f ll i l ti hi

Step 1: Combinations with identity. Step 2: Binary self‐combinations.

• Thus we have the following relationships:

C2E = EC2 = C2 vE= Ev = v v‘E = Ev‘ = v‘



Step 3:Mixed binary combinations.

• Let us consider the combination of C2σv .

• First we perform the v operation followed by the C2 operation.

• This result is the same as that achieved by σ ' alone:This result is the same as that achieved by σv alone:

• Thus, we can write the following relationship: C2σv = σv'



Complete Multiplication Table

• General Features:

 The first row of results duplicates the list of operations in the header row.

 The first column of results duplicates the list of operations in the label column.

 Every row shows every operation once and only once.

 Every column shows every operation once and only once.

 The order of resultant operations in every row is different from any other row.

 The order of resultant operations in every column is different from any other column.



Symmetry Point Groups
• The complete set of symmetry operations (not symmetry elements) for a molecule or ion

satisfies the requirements of a mathematical group.

• These symmetry operations are the elements of a group and define the symmetry pointy y p g p y y p
group for that molecule or ion.

• The total number of symmetry operations comprising the group is the order of the group, h.

• The group formed by the operations of CBr Cl is named C where h = 4The group formed by the operations of CBr2Cl2 is named C2v where h = 4.

• The group of symmetry operations must satisfy the four requirements of a mathematical
group, i.e., closure, identity, associativity, and reciprocality.



Requirements of a Mathematical Group (1)

• Closure: If A and B are in the group G, and AB = X, then X is also in G.

 All groups have a self‐contained multiplication table, whose products are members of
the group.

 For example, inspection of the multiplication table for the operations of CBr2Cl2 shows2 2

that all binary combinations equal either E, C2 , v orv‘ .

 These four symmetry operations constitute the complete set of elements of a point
group called C2v , the order of which is four.



Requirements of a Mathematical Group (2)

• Identity: In any group G, there is an element E, such that

EX = XE = X

The symmetry operation of identity is this group element.

 This requirement explains the need to define the symmetry operation of identity, which
functions at the identity element for every symmetry groupfunctions at the identity element for every symmetry group.

 As the C2v multiplication table demonstrates, the identity operation does indeed meet
the requirements of the identity element of a group.



Requirements of a Mathematical Group (3)

• Associativity: The associative law of combination is valid for all combinations of elements
of the group. If A, B, C, and X are in G, then

( ) ( )C(BA) = X = (CB)A

But commutation is not general (e.g., BAC ≠ CBA).

 For example, in the C2v point group

C2 vv‘ ) = (C2v )v‘

for the first combination we see

C2 vv‘) = C2C2 = E

for the second combination we see

(C2v )v‘ = v‘v‘ = E

 Groups in which all elements do commute are called Abelian (e.g., C2v).



Requirements of a Mathematical Group (4)

• Reciprocality: In any group G, every element A has an inverse A‐1, such that

AA–1 =  A–1A  =  E

An element may be its own inverse (e.g., all operations of C2v).

 For the C2v point group every symmetry operation is its own inverse.



Subgroups
• Within all groups there are smaller collections of elements, called subgroups, which also

obey the criteria for a group.

note: one exception is the trivial asymmetric group C = {E}note: one exception is the trivial asymmetric group, C1 = {E}

• The order of any subgroup, g, relative to the order of its parent group, h, must be

h / g  =  n ( n =  1,2,3,4,….etc.)

• Not every allowed value of g is always represented among a group’s subgroups.

• For the C2v point group (h = 4) subgroups with g = 1, 2 are possible and each exist.

• From the multiplication table of C2v we can identify the following subgroups



Point Groups of Molecules
• Chemists in general and spectroscopists in particular use the Schönflies notation.Chemists in general and spectroscopists in particular use the Schönflies notation.

• In contrast , crystallographers prefer to use the Hermann‐Mauguin notation, which is best
suited for designating the 32 crystallographic point groups and the space groups used to
describe crystal structures.

• Familiar Schönflies labels and their corresponding Hermann‐Mauguin notation are

• All of the chemically important point groups fall within one of four general categories:

1. Non‐rotational

2. Single‐axis rotational

3. Dihedral

4. Cubic



Non‐Rotational Point Groups
• With their low orders (h = 1,2) and lack of an axis of symmetry, the non‐rotational point groups

represent the lowest symmetry point groups.

 C1 is the point group of asymmetric molecules which only possess the identity element E.

 The Cs point group describes the symmetry of bilateral objects that lack any symmetry
other than E and h .

 The Ci point group is not commonly encountered as most molecules which posses the i
element also possess other complimentary symmetry elements.



Single‐Axis Rotational Point Groups

• The simplest family of this group are the Cn point groups, which consist of operations
generated by an n‐fold rotation Cn applied successively n times.

• These point groups are an example of the important cyclic groups.p g p p p y g p



• A cyclic group of order h is generated by taking a single element X through all its powers up
to Xh = E.

G = { X, X2 , ... , Xh = E }

• All cyclic groups are Abelian, since all of their multiplications commute.All cyclic groups are Abelian, since all of their multiplications commute.

• The Cn and S2n groups are cyclic groups; e.g.,

C4 = { C4 , C42 , C43 , E }

S4 = { S4, C2 , S43 , E }

• The multiplication tables of cyclic groups "scroll" from row to row and column to column:
e.g.,



• To the rotations of the corresponding Cn groups the family of Cnv groups adds n vertical mirror
planes which intersect at the C axisplanes, which intersect at the Cn axis.

• The point group Cv , which has a infinite‐fold C rotational axis, is an important member of this
family. It is the point group of all non‐centrosymmetric linear molecules.

e g H Cl C Oe.g., H‐Cl, CO.

• To generate any of the Cnh groups, we need only add a horizontal mirror plane to the series of
Cn rotations of the appropriate cyclic Cn group.

• Since Cnh = Sn and C2h = S2 = i , these groups also have n‐fold improper axes when n > 2,
and they are centrosymmetric when n is even.

• The S2n series are not common.



Dihedral Point Groups
• The dihedral groups have n twofold axes perpendicular to the principal n‐fold axis. These C2

axes are called the dihedral axes.

• The number and arrangement of the dihedral axes are dictated by the n‐fold order of the
principal axisprincipal axis.

e.g. the staggered conformation of ethane is of D3d symmetry and possesses 3C2 dihedral axes.



• There are three families of dihedral groups: Dn , Dnd , Dnh

1) The D groups may be thought of as C groups to which n dihedral C2 operations have1) The Dn groups may be thought of as Cn groups to which n dihedral C2 operations have
been added.

Unlike the Cn groups, the Dn groups are not cyclic.

2) Similarly the D groups may be thought of as C groups to which n dihedral C2) Similarly, the Dnd groups may be thought of as Cnv groups to which n dihedral C2
operations have been added.

In Dnd groups, the combination of rotational operations and vertical mirror reflections (d)
generates a series of S2n operations about an axis collinear with the principal axis.g 2n p p p

3) The Dnh groups may be thought of as Cnh groups to which n dihedral C2 operations have
been added.

Like the C groups the D groups include n‐fold improper axis when n>2 and areLike the Cnh groups, the Dnh groups include n‐fold improper axis when n>2 and are
centrosymmetric.



Cubic Point Groups
• The cubic groups are associated with polyhedra that are geometrically related to the cube.

• All are characterized by the presence of multiple, intersecting, high‐order rotational axes.

• There are seven groups of this type, three of which are frequently encountered and highlyg p yp , q y g y
relevant in chemistry

Cube (Oh) Tetrahedron (Td) Octahedron (Oh) Icosahedron (I h)



• The perfect tetrahedron defines the Td group, comprised of the following 24 operations, listed
b lby classes:

E , 8C3 (= 4C3 , 4C32 ), 3C2 , 6S4 (= 3S4 , 3S43 ), 6d

with h = 24 , Td represents one of the higher symmetries encountered in chemistry.

• A three‐fold axis, generating the operations C3 and C32 , emerges from each of the four
triangular faces of a tetrahedron.

• When a tetrahedron is inscribed inside a cube a C2 axis collinear with the bisector of opposing2 pp g
bond angles emerges from each pair of apposite cube faces.

• Three S4 axes, each associated with S4 and S43 operations, are each collinear with these C2
axes.

Tetrahedron (Td)



• The octahedron and cube both belong to the point group Oh , which is comprised of theh

following 48 operations (h = 48)

E , 8C3(= 4C3 , 4C32 ), 6C4(= 3C4 , 3C43 ), 6C2 , 3C2(= 3C42), i , 6S4(= 3S4 , 3S43 ), 8S6(= 4S6 , 4S65 ),

h(= xy , yz , xz), 6d

• In the octahedron a fourfold axis emerges from each pair of opposite apices, whereas a

h f ld i f h i f i i l fthreefold axis emerges from each pair of opposite triangular faces.

• In the cube, a fourfold axis emerges from each pair of opposite faces, whereas a threefold axis

emerges from each pair of opposite corners extending the diagonals of the cubeemerges from each pair of opposite corners, extending the diagonals of the cube.

Cube (Oh)



• Both the regular icosahedron and dodecahedron belong to the point group Ih , composed of

120 symmetry operations120 symmetry operations

E , 8C3(= 4C3 , 4C32 ), 6C4(= 3C4 , 3C43 ), 6C2 , 3C2(= 3C42), i , 6S4(= 3S4 , 3S43 ), 8S6(= 4S6 , 4S65 ),

h(= xy , yz , xz), 6dh( xy , yz , xz), d

• Aside from the Cv and Dh point groups which have an order of h = , Ih represents the

highest symmetry one is likely to encounter in structural chemistry.

• Buckminsterfullerene C60 is an example of a high‐order polyhedron with Ih symmetry.

• A fivefold axis emerges from the face of each five‐membered ring and a threefold axis emerges

from the face of each six‐membered ring.

I h
Icosahedron (I h)



Flow chart for systematically determining the point group of a molecule.



Examples for point group classification.


