Symmetry Operations and Elements

• The goal for this section of the course is to understand how symmetry arguments can be applied to solve physical problems of chemical interest.

• To achieve this goal we must identify and catalogue the complete symmetry of a system and subsequently employ the mathematics of groups to simplify and solve the physical problem in question.

• A **symmetry element is an imaginary geometrical construct** about which a symmetry operation is performed.

• A **symmetry operation is a movement of an object about a symmetry element** such that the object's orientation and position before and after the operation are *indistinguishable*.

• A symmetry operation carries every point in the object into an *equivalent point or the identical point*.
Point Group Symmetry

- All symmetry elements of a molecule pass through a central point within the molecule.
- The more symmetry operations a molecule has, the higher its symmetry is.
- Regardless of how many or few symmetry operations a molecule possesses, all are examples of one of five types.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Element</th>
<th>Element Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity, E</td>
<td>The object</td>
<td>N/A</td>
</tr>
<tr>
<td>Proper rotation, C_n</td>
<td>Proper axis, Rotation axis</td>
<td>line</td>
</tr>
<tr>
<td>Reflection, σ</td>
<td>Mirror plane, Reflection plane</td>
<td>plane</td>
</tr>
<tr>
<td>Inversion, i</td>
<td>Inversion center, Center of symmetry</td>
<td>point</td>
</tr>
<tr>
<td>Rotation-reflection</td>
<td>Improper axis, alternating axis</td>
<td>line</td>
</tr>
<tr>
<td>Improper rotation, S_n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Point Group Symmetry

- If a molecule has rotational symmetry, rotation by $2\pi/n = 360°/n$ brings the object into an equivalent position.
- The value of n is the order of an n-fold rotation.
- If the molecule has one or more rotational axes, the one with the highest value of n is the principal axis of rotation.

Successive C_4 clockwise rotations of a planar MX$_4$ molecule about an axis perpendicular to the plane of the molecule ($X_A = X_B = X_C = X_D$).
The C_2' and C_2'' axes of a planar MX$_4$ molecule.
General Relationships for C_n

\[C_n^n = E \]
\[C_{2n}^n = C_2 \quad (n = 2, 4, 6, 8... \text{etc.}) \]
\[C_n^m = C_{m/n} \quad (m/n = 2, 3, 4, 5... \text{etc.}) \]
\[C_n^{n-1} = C^{-n}_n \]
\[C_n^{n+m} = C_n^m \quad (m < n) \]

• Every n-fold rotational axis has $n-1$ associated operations (excluding $C_n^n = E$).
Reflection, σ

Two points, equidistant from a mirror plane σ, related by reflection.

- For a point (x, y, z), reflection across a mirror plane σ_{xy} takes the point into $(x, y, -z)$.
- Each mirror plane has only one operation associated with it
 i.e., $\sigma^2 = E$.
Horizontal, Vertical, and Dihedral Mirror Planes

Mirror planes of a square planar molecule MX$_4$.
Inversion, \(i \)

- If inversion symmetry exists, for every point \((x,y,z)\) there is an equivalent point \((-x,-y,-z)\).
- Each inversion center has only one operation associated with it, since \(i^2 = E\).

Effect of inversion \((i)\) on an octahedral \(MX_6\) molecule \((X_A = X_B = X_C = X_D = X_E = X_F)\).
Inversion, i

- Ethane in the staggered configuration. The inversion center is at the midpoint along the C-C bond. Hydrogen atoms related by inversion are connected by dotted lines, which intersect at the inversion center. The two carbon atoms are also related by inversion.
Rotation-Reflection (Improper Rotation), S_n

- S_n exists if the movements C_n followed by σ_h (or vice versa) bring the object to an equivalent position.
- If both C_n and σ_h exist, then S_n must exist.
- Example: S_4 collinear with C_4 in planar MX$_4$.
- Neither C_n nor σ_h need exist for S_n to exist.
- Example: S_4 collinear with C_2 in tetrahedral MX$_4$.

S_4 improper rotation of a tetrahedral MX$_4$ molecule ($X_A = X_B = X_C = X_D$). The improper axis is perpendicular to the page. Rotation is arbitrarily taken in a clockwise direction. Note that neither C_4 nor σ_h are genuine symmetry operations of tetrahedral MX$_4$.
Successive S_4 operations on a tetrahedral MX$_4$ molecule ($X_A = X_B = X_C = X_D$). Rotations are clockwise, except S_4^{-1}, which is equivalent to the clockwise operation S_4^3.
A tetrahedral MX₄ molecule inscribed in a cube. A C₂ axis, collinear with an S₄ axis, passes through the centers of each pair of opposite cube faces and through the center of the molecule.
Non-Genuine S_n Operations:

- $S_1 = \sigma$
- $S_2 = i$
- The lowest order S_n operation that is not a simpler operation is S_3.
General Relations of Improper Axes

• Equivalences of successive S_n operations:

 ➢ If n is even, $S_n^n = E$

 ➢ If n is odd, $S_n^n = \sigma$ and $S_n^{2n} = E$

 ➢ If m is even, $S_n^m = C_{n/m}$ when $m < n$ and $S_n^m = C_n^{m-n}$ when $m > n$

 ➢ If S_n with even n exists, then $C_{n/2}$ exists

 ➢ If S_n with odd n exists, then both C_n and σ perpendicular to C_n exist.
Examples

• Find all symmetry elements and operations in the following:
Defining the Coordinate System

• Molecules are conventionally oriented relative to a right-hand Cartesian coordinate system:

• The following conventions of axis orientation are usually observed:

 1. The origin of the coordinate system is located at the central atom or the center of the molecule.

 2. The z axis is collinear with the highest-order rotational axis (the principal axis). If there are several highest order rotational axes, z is usually taken as the axis passing through the greatest number of atoms.

However, for a tetrahedral molecule, the x, y, and z axes are defined as collinear with the three C_2 axes (collinear with the three S_4 axes).
Defining the Coordinate System (contd.)

3. For planar molecules, if the z axis as defined above is perpendicular to the molecular plane, the x axis lies in the plane of the molecule and passes through the greatest number of atoms.

If the z axis lies in the plane of the molecule, then the x axis stands perpendicular to the plane.
4. For non-planar molecules, once the z axis has been defined, the x axis is usually chosen so that the xz plane contains as many atoms as possible. If there are two or more such planes containing identical sets of atoms, any one may be taken as the xz plane.

Where a decision about the orientation of the x axis cannot be made on this basis, the distinction between x and y is usually not important or is not generally fixed by convention.
Combining Symmetry Operations (Multiplication)

- Multiplication of symmetry operations is the successive performance of two or more operations to achieve an orientation that could be reached by a single operation.

- The order in which successive different symmetry operations are performed can affect the result.

- *Multiplication of symmetry operations is not in general commutative, although certain combinations may be.*

- In writing multiplications of symmetry operation we use a "right-to-left" notation:
 - $BA = X$ "Doing A then B has the same result as the operation X.
 - We cannot assume that reversing the order will have the same result.
 - It may be that either $BA \neq AB$ or $BA = AB$.

- *Multiplication is associative:*

 $$C(BA) = (CB)A$$
The order of performing S_4 and σ_v, shown here for a tetrahedral MX$_4$ molecule, affects the result. The final positions in each case are not the same, but they are related to each other by C_2.
Multiplication Tables

- All possible binary combinations of symmetry operations can be summarized in a multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

- Combination order is "top" then "side"; e.g.,

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>EE = E</td>
<td>EA = A</td>
<td>EB = B</td>
<td>EC = C</td>
</tr>
<tr>
<td>A</td>
<td>AE = A</td>
<td>AA = B</td>
<td>AB = C</td>
<td>AC = E</td>
</tr>
<tr>
<td>B</td>
<td>BE = B</td>
<td>BA = C</td>
<td>BB = E</td>
<td>BC = A</td>
</tr>
<tr>
<td>C</td>
<td>CE = C</td>
<td>CA = E</td>
<td>CB = A</td>
<td>CC = B</td>
</tr>
</tbody>
</table>
• Symmetry elements of CBr₂Cl₂
Matrix Notation of the Effects of the Operations

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_a \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b
\end{bmatrix}
\]

- Multiplication
Multiplication Table for the Operations of CBr$_2$Cl$_2$

- **Step 1: Combinations with identity.**

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>σ_v</th>
<th>σ_v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>C_2</td>
<td>σ_v</td>
<td>σ_v'</td>
</tr>
<tr>
<td>C_2</td>
<td>C_2</td>
<td>C_2</td>
<td>σ_v</td>
<td>σ_v'</td>
</tr>
<tr>
<td>σ_v</td>
<td>σ_v</td>
<td>σ_v</td>
<td>σ_v'</td>
<td></td>
</tr>
<tr>
<td>σ_v'</td>
<td>σ_v'</td>
<td>σ_v'</td>
<td>σ_v'</td>
<td></td>
</tr>
</tbody>
</table>

- **Step 2: Binary self-combinations.**

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>σ_v</th>
<th>σ_v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>C_2</td>
<td>σ_v</td>
<td>σ_v'</td>
</tr>
<tr>
<td>C_2</td>
<td>C_2</td>
<td>E</td>
<td>σ_v</td>
<td>E</td>
</tr>
<tr>
<td>σ_v</td>
<td>σ_v</td>
<td>E</td>
<td>σ_v'</td>
<td></td>
</tr>
<tr>
<td>σ_v'</td>
<td>σ_v'</td>
<td>E</td>
<td>σ_v'</td>
<td></td>
</tr>
</tbody>
</table>
Step 3: Mixed binary combinations.

\[C_2 \sigma_v = ? \]

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_v' \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix}
\]

This result is the same as that achieved by \(\sigma_v' \) alone:

\[
\begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} \times \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix} = \begin{bmatrix}
\text{Br}_a \\
\text{Br}_b \\
\text{Cl}_a \\
\text{Cl}_b \\
\end{bmatrix}
\]

\[C_2 \sigma_v = \sigma_v' \]
Complete Multiplication Table

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>σ_v</th>
<th>σ_v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>C_2</td>
<td>σ_v</td>
<td>σ_v'</td>
</tr>
<tr>
<td>C_2</td>
<td>C_2</td>
<td>E</td>
<td>σ_v'</td>
<td>σ_v</td>
</tr>
<tr>
<td>σ_v</td>
<td>σ_v</td>
<td>σ_v'</td>
<td>E</td>
<td>C_2</td>
</tr>
<tr>
<td>σ_v'</td>
<td>σ_v'</td>
<td>σ_v</td>
<td>C_2</td>
<td>E</td>
</tr>
</tbody>
</table>

- **General Results:**
 - The first row of results duplicates the list of operations in the header row.
 - The first column of results duplicates the list of operations in the label column.
 - Every row shows every operation once and only once.
 - Every column shows every operation once and only once.
 - The order of resultant operations in every row is different from any other row.
 - The order of resultant operations in every column is different from any other column.
Symmetry Point Groups

- The complete collection of symmetry operations (not symmetry elements) satisfies the requirements of a mathematical group.
- The symmetry operations are the elements of a group.
- The total number of symmetry operations comprising the group is the order of the group, h.
- The group formed by the operations of CBr$_2$Cl$_2$ is named C$_{2v}$.

\[
\begin{array}{c|cccc}
 & E & C_2 & \sigma_v & \sigma_v' \\
\hline
 E & E & C_2 & \sigma_v & \sigma_v' \\
 C_2 & C_2 & E & \sigma_v' & \sigma_v \\
 \sigma_v & \sigma_v & \sigma_v' & E & C_2 \\
 \sigma_v' & \sigma_v' & \sigma_v & C_2 & E \\
\end{array}
\]
Group Requirements

- **Closure:** If A and B are in the group G, and $AB = X$, then X is also in G.

 All groups have a self-contained multiplication table, whose products are members of the group.

- **Identity:** In any group G, there is an element E, such that

 $$EX =XE = X$$

 The symmetry operation of identity is this group element.

- **Associativity:** If A, B, C, and X are in G, then

 $$C(BA) = X = (CB)A$$

 But commutation is not general (e.g., $S_4 \sigma_v \neq \sigma_v S_4$).

 Groups in which all elements *do* commute are called Abelian (e.g., C_{2v}).

- **Reciprocal:** In any group G, every element A has an inverse A^{-1}, such that

 $$AA^{-1} = A^{-1}A = E$$

 An element may be its own inverse (e.g., all operations of C_{2v}).
Subgroups

• *Within all groups there are smaller collections of elements, called subgroups, which also obey the criteria for a group.*

 note: one exception is the trivial asymmetric group, \(C_1 = \{E\} \)

The order of any subgroup, \(g \), relative to the order of its parent group, \(h \), must be

\[
h / g = n \quad (n = 1, 2, 3, 4, \ldots \text{etc.})
\]

Not every allowed value of \(g \) is always represented among a group’s subgroups.

Subgroups of \(C_{2v} \) (\(h / g = 4 / g = 1, 2 \))

<table>
<thead>
<tr>
<th>Group Label</th>
<th>Operations (Group Elements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>(E)</td>
</tr>
<tr>
<td>(C_2)</td>
<td>(E, C_2)</td>
</tr>
<tr>
<td>(C_s)</td>
<td>(E, \sigma_v) or (E, \sigma_v')</td>
</tr>
</tbody>
</table>
Point Groups of Molecules

- Chemists in general and spectroscopists in particular use the Schönflies notation; crystallographers use the Hermann-Mauguin notation.

 e.g.,

<table>
<thead>
<tr>
<th>Schönflies</th>
<th>Hermann-Mauguin</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
</tr>
<tr>
<td>C_s</td>
<td>m</td>
</tr>
<tr>
<td>C_2</td>
<td>2</td>
</tr>
<tr>
<td>C_{2v}</td>
<td>mm</td>
</tr>
<tr>
<td>D_2</td>
<td>222</td>
</tr>
<tr>
<td>D_{3h}</td>
<td>$(3/m)mm$</td>
</tr>
</tbody>
</table>
Common Point Groups and Their Principal Operations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Nonrotational Groups</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td></td>
<td>E (asymmetric)</td>
</tr>
<tr>
<td>C_s</td>
<td></td>
<td>E, σ_h</td>
</tr>
<tr>
<td>C_i</td>
<td></td>
<td>E, i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Single-axis Groups</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_n</td>
<td></td>
<td>E, C_n, \ldots, C_n^{n-1}</td>
</tr>
<tr>
<td>C_{nm}</td>
<td></td>
<td>E, C_n, \ldots, C_n^{n-1}, $n\sigma_v$ ($n/2$ σ_d and $n/2$ σ_d if n even)</td>
</tr>
<tr>
<td>C_{nh}</td>
<td></td>
<td>E, C_n, \ldots, C_n^{n-1}, σ_h</td>
</tr>
<tr>
<td>S_{2n}</td>
<td></td>
<td>E, S_{2n}, \ldots, S_{2n}^{2n-1}</td>
</tr>
<tr>
<td>$C_{\infty v}$</td>
<td></td>
<td>E, C_{∞}, $\infty\sigma_v$ (noncentrosymmetric linear)</td>
</tr>
</tbody>
</table>
Common Point Groups and Their Principal Operations

Dihedral Groups

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operations</th>
<th>((n = 2, 3, \ldots, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_n)</td>
<td>(E, C_n, \ldots, C_n^{n-1}, nC_2(\perp C_n))</td>
<td></td>
</tr>
<tr>
<td>(D_{nd})</td>
<td>(E, C_n, \ldots, C_n^{n-1}, S_{2n}, \ldots, S_{2n}^{2n-1}, nC_2(\perp C_n), n\sigma_d)</td>
<td></td>
</tr>
<tr>
<td>(D_{nh})</td>
<td>(E, C_n, \ldots, C_n^{n-1}, nC_2(\perp C_n), \sigma_h, n\sigma_v)</td>
<td></td>
</tr>
<tr>
<td>(D_{oh})</td>
<td>(E, C_{\infty}, \infty C_2(\perp C_{\infty}), \infty\sigma_v, \infty\sigma_d) (i) (centrosymmetric linear)</td>
<td></td>
</tr>
</tbody>
</table>

Cubic Groups

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_d)</td>
<td>(E, 4C_3, 4C_3^2, 3C_2, 3S_4, 3S_4^3, 6\sigma_d) () (tetrahedron)</td>
</tr>
<tr>
<td>(O_h)</td>
<td>(E, 4C_3, 4C_3^2, 6C_2, 3C_4, 3C_4^3, 3C_2 (= C_4^2), i, 3S_4, 3S_4^3, 4S_6, 4S_6^5, 3\sigma_h, 6\sigma_d) () (octahedron)</td>
</tr>
<tr>
<td>(I_h)</td>
<td>(E, 6C_5, 6C_5^2, 6C_5^3, 6C_5^4, 10C_3, 10C_3^2, 15C_2, i, 6S_{10}, 6S_{10}^3, 6S_{10}^7, 6S_{10}^6, 10S_6, 10S_6^5, 15\sigma) () (icosahedron, dodecahedron)</td>
</tr>
</tbody>
</table>
Cyclic Groups

- A cyclic group of order h is generated by taking a single element X through all its powers to $X_h = E$.

$$G = \{ X, X_2, \ldots, X_h = E \}$$

- All cyclic groups are Abelian.

- The C_n and S_{2n} groups are cyclic groups; e.g.,

$$C_4 = \{ C_4, C_4^2, C_4^3, E \}$$

$$S_4 = \{ S_4, C_2, S_4^3, E \}$$

- The multiplication tables of cyclic groups "scroll" from row to row and column to column: e.g.,

$$\begin{array}{c|cccc}
C_4 & E & C_4 & C_2 & C_4^3 \\
\hline
E & E & C_4 & C_2 & C_4^3 \\
C_4 & C_4 & C_2 & C_4^3 & E \\
C_2 & C_2 & C_4^3 & E & C_4 \\
C_4^3 & C_4^3 & E & C_4 & C_2 \\
\end{array}$$
Examples of molecules with various point group symmetries
Flow chart for systematically determining the point group of a molecule.
Examples for point group classification.
Representations of the three conformations of ethane as two triangles separated along the C_3 axis. The corresponding Newman projections are shown on the right.