Bonding in transition metal complexes

- **Crystal Field Theory (CFT)**
 - Assumes electrostatic (ionic) interactions between ligands and metal ions
 - Useful for understanding magnetism and electronic spectra

- **Valence Bond (VB) Theory**
 - Assumes covalent M–L bonds formed by ligand electron donation to empty metal hybrid orbitals.
 - Useful for rationalizing magnetic properties, but cannot account for electronic spectra.
 - Offers little that cannot be covered better by other theories.

- **Molecular Orbital (MO) Theory**
 - Approach using M–L general MOs
 - Excellent quantitative agreement, but less useful in routine qualitative discussions

- **Ligand Field Theory (LFT)**
 - Modified CFT
 - Makes empirical corrections to account for effects of M–L orbital overlap, improving quantitative agreement with observed spectra
CFT & d-subshell Splitting in an O_h Field

- In the octahedral (O_h) environment the fivefold degeneracy among the d orbitals is lifted.

- If the ligand field is of O_h symmetry the d subshell will separate into a set of three degenerate orbitals ($t_{2g} = d_{xy}, d_{yz}, d_{xz}$) and a set of two degenerate orbitals ($e_g = d_{x^2-y^2}, d_{z^2}$).

- Relative to the energy of the hypothetical spherical field, the e_g set will rise in energy and the t_{2g} set will fall in energy, creating an energy separation of Δ_o or $10 \, Dq$ between the two sets of d orbitals.
• The t_{2g} orbitals point between ligands.
• The e_g orbitals point directly at the ligands.
• Thus, the t_{2g} set is stabilized and the e_g set is destabilized (relative to the energy of a hypothetical spherical electric field).
• The energy increase of the e_g orbitals and the energy decrease of the t_{2g} orbitals must be balanced relative to the energy of the hypothetical spherical field (aka the barycenter).

• The energy of each of the two orbitals of the e_g set rises by $+3/5 \Delta_o$ ($+6Dq$) while the energy of each of the three t_{2g} orbitals falls by $-2/5 \Delta_o$ ($-4Dq$).

• This results in no net energy change for the system:

$$\Delta E = E(e_g) + E(t_{2g})$$

$$= (2)(+3/5 \Delta_o) + (3)(-2/5 \Delta_o)$$

$$= (2)(+6Dq) + (3)(-4Dq) = 0$$

(The magnitude of Δ_o depends upon both the metal ion and the attaching ligands)
In an octahedral complex, electrons fill the t_{2g} and e_g orbitals in an aufbau manner, but for configurations $d^4 – d^7$ there are two possible filling schemes depending on the magnitude of Δ_0 relative to the mean electron pairing energy, P.

A high-spin configuration avoids pairing by spreading the electrons across both the t_{2g} and e_g levels.

A low-spin configuration avoids occupying the higher energy e_g level by pairing electrons in the t_{2g} level.

For a given metal ion, the pairing energy is relatively constant, so the spin state depends upon the magnitude of the field strength, Δ_0.

Low field strength results in a high-spin state.

High field strength results in a low-spin state.

For example, a d^4 configuration, the high-spin state is $t_{2g}^3e_g^1$, and the low-spin state is $t_{2g}^4e_g^0$.

High-Spin and Low-Spin Configurations
Low field strength results in a high-spin state.

High field strength results in a low-spin state.

For a d^4 configuration, the high-spin state is $t_{2g}^3e_g^1$, and the low-spin state is $t_{2g}^4e_g^0$.
MO used for most sophisticated and quantitative interpretations

LFT used for semi-quantitative interpretations

CFT used for everyday qualitative interpretations
Construction of MO diagrams for Transition Metal Complexes

\(\sigma \) bonding only scenario
General MO Approach for MX$_n$ Molecules

• To construct delocalized MOs we define a *linear combination of atomic orbitals (LCAOs)* that combine central-atom AOs with combinations of pendant ligand orbitals called SALCs:

\[
\Psi_{MO} = a \Psi \text{ (Metal AO)} \pm b \Psi \text{ (SALC } \text{nX)}
\]

(SALC = Symmetry Adapted Linear Combination)

• SALCs are constructed with the aid of group theory, and those SALCs that belong to a particular species of the group are matched with central-atom AOs with the same symmetry to make bonding and antibonding MOs.

\[
\Psi_{SALC} = c_1 \Psi_1 \pm c_2 \Psi_2 \pm c_3 \Psi_3 \ldots \pm c_n \Psi_n
\]
1. Use the directional properties of potentially bonding orbitals on the outer atoms (shown as vectors on a model) as a basis for a representation of the SALCs in the point group of the molecule.

point group = O_h
2. Generate a **reducible representation** for all possible SALCs by noting whether vectors are shifted or non-shifted by each class of operations of the group.

- Each vector shifted through space contributes 0 to the character for the class.

Each non-shifted vector contributes 1 to the character for the class.

```
point group = \( O_h \)
```

<table>
<thead>
<tr>
<th>(O_h)</th>
<th>(E)</th>
<th>(8C_3)</th>
<th>(6C_2)</th>
<th>(6C_4)</th>
<th>(3C_2)</th>
<th>(i)</th>
<th>(6S_4)</th>
<th>(8S_6)</th>
<th>(3\sigma_h)</th>
<th>(6\sigma_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_\sigma)</td>
<td></td>
</tr>
</tbody>
</table>
2. Generate a **reducible representation** for all possible SALCs by noting whether vectors are shifted or non-shifted by each class of operations of the group.

- Each vector shifted through space contributes 0 to the character for the class.

 Each non-shifted vector contributes 1 to the character for the class.

<table>
<thead>
<tr>
<th></th>
<th>O_h</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_σ</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

point group = O_h
3. Decompose the reducible representation into its component irreducible representations to determine the symmetry species of the SALCs.

- For complex molecules with a large dimension reducible representation, identification of the component irreducible representations and their quantitative contributions can be carried out systematically using the following equation

\[n_i = \frac{1}{h} \sum_c g_c \chi_i \chi_r \]

- The work of carrying out a **systematic reduction** is better organized by using the **tabular method**, rather than writing out the individual equations for each irreducible representation.

\[n_i : \text{ number of times the irreducible representation } i \text{ occurs in the reducible representation} \]
\[h : \text{ order of the group} \]
\[c : \text{ class of operations} \]
\[g_c : \text{ number of operations in the class} \]
\[\chi_i : \text{ character of the irreducible representation for the operations of the class} \]
\[\chi_r : \text{ character of the reducible representation for the operations of the class} \]
Character Table for O_h

point group = O_h

<table>
<thead>
<tr>
<th>O_h</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
<th>$h = 48$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1g}</td>
<td>1</td>
<td>$x^2 + y^2 + z^2$</td>
</tr>
<tr>
<td>A_{2g}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$(2z^2 - x^2 - y^2, x^2 - y^2)$</td>
</tr>
<tr>
<td>E_g</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>(R_x, R_y, R_z)</td>
</tr>
<tr>
<td>T_{1g}</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>(xz, yz, xy)</td>
</tr>
<tr>
<td>T_{2g}</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>A_{1u}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>A_{2u}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>E_u</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>T_{1u}</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>T_{2u}</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>(x, y, z)</td>
</tr>
</tbody>
</table>
Transformation Properties of Central AOs

- Transformation properties for the standard AOs in any point group can be deduced from listings of vector transformations in the character table for the group.

\(s \) – transforms as the totally symmetric representation in any group.

\(p \) – transform as \(x, y, \) and \(z \), as listed in the second-to-last column of the character table.

\(d \) – transform as \(xy, xz, yz, x^2-y^2 \), and \(z^2 \) (or \(2z^2-x^2-y^2 \))

e.g., in \(T_d \) and \(O_h \), as listed in the last column of the character table.
Mulliken Symbols
- Irreducible Representation Symbols

• In non-linear groups:

 * A : non-degenerate; symmetric to C_n where $\chi(C_n) = 1$.
 * B : non-degenerate; anti-symmetric to C_n where $\chi(C_n) = -1$.
 * E : doubly-degenerate; $\chi(E) = 2$.
 * T : triply-degenerate; $\chi(T) = 3$.
 * G : four-fold degeneracy; $\chi(G) = 4$, observed in I and I_h.
 * H : five-fold degeneracy; $\chi(H) = 5$, observed in I and I_h.

• In linear groups $C_{\infty v}$ and $D_{\infty h}$:

 * $\Sigma \equiv A$: non-degenerate; symmetric to C_∞; $\chi(C_\infty) = 1$.
 * $\Pi, \Delta, \Phi \equiv E$: doubly-degenerate; $\chi(E) = 2$.
Mulliken Symbols - Modifying Symbols

• With any degeneracy in any centrosymmetric groups:

 subscript \(g \) : \textit{gerade} ; symmetric with respect to inversion ; \(\chi_i > 0 \).

 subscript \(u \) : \textit{ungerade} ; anti-symmetric with respect to inversion ; \(\chi_i < 0 \).

• With any degeneracy in non-centrosymmetric non-linear groups:

 prime (‘) : symmetric with respect to \(\sigma_h \); \(\chi(\sigma_h) > 0 \).

 double prime (“”) : anti-symmetric with respect to \(\sigma_h \); \(\chi(\sigma_h) < 0 \).

• With non-degenerate representations in non-linear groups:

 subscript \(1 \) : symmetric with respect to \(C_m \) (\(m < n \)) or \(\sigma_v \);
 \(\chi(C_m) > 0 \) or \(\chi(\sigma_v) > 0 \).

 subscript \(2 \) : anti-symmetric with respect to \(C_m \) (\(m < n \)) or \(\sigma_v \);
 \(\chi(C_m) < 0 \) or \(\chi(\sigma_v) < 0 \).

• With non-degenerate representations in linear groups (\(C_{\infty v} \) and \(D_{\infty h} \)):

 subscript + : symmetric with respect to \(\infty C_2 \) or \(\infty \sigma_v \);
 \(\chi(\infty C_2) = 1 \) or \(\chi(\infty \sigma_v) = 1 \).

 subscript − : anti-symmetric with respect to \(\infty C_2 \) or \(\infty \sigma_v \);
 \(\chi(\infty C_2) = -1 \) or \(\chi(\infty \sigma_v) = -1 \).
Systematic Reduction for O_h

<table>
<thead>
<tr>
<th>O_h</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
<th>Σ</th>
<th>$n_i = \Sigma/h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_σ</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>$(h = 48)$</td>
</tr>
<tr>
<td>A_{1g}</td>
<td></td>
</tr>
<tr>
<td>A_{2g}</td>
<td></td>
</tr>
<tr>
<td>E_g</td>
<td></td>
</tr>
<tr>
<td>T_{1g}</td>
<td></td>
</tr>
<tr>
<td>T_{2g}</td>
<td></td>
</tr>
<tr>
<td>A_{1u}</td>
<td></td>
</tr>
<tr>
<td>A_{2u}</td>
<td></td>
</tr>
<tr>
<td>E_u</td>
<td></td>
</tr>
<tr>
<td>T_{1u}</td>
<td></td>
</tr>
<tr>
<td>T_{2u}</td>
<td></td>
</tr>
</tbody>
</table>
Systematic Reduction for O_h

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
<th>Σ</th>
<th>$n_i = \Sigma/h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_σ</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{1g}</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>A_{2g}</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>-12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_g</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{1g}</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>-12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T_{2g}</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_{1u}</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>-12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_{2u}</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_u</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T_{1u}</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{2u}</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>-12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$(h = 48)$
4. The number of SALCs, including members of degenerate sets, must equal the number of ligand orbitals taken as the basis for the representation.

\[
\Gamma_\sigma = A_{1g} + E_g + T_{1u}
\]

\[
d_\Gamma = 1 + 2 + 3 = 6
\]

point group = O_h
5. Determine the symmetries of potentially bonding central-atom AOs by inspecting unit vector and direct product transformations listed in the character table of the group.

\[
\Gamma_\sigma = A_{1g} + E_g + T_{1u}
\]

point group = \(O_h\)

Cr bonding AOs

\(A_{1g}\) : 4s
\(T_{1u}\) : \((4p_x, 4p_y, 4p_z)\)
\(E_g\) : \((3dx^2-y^2, 3dz^2)\)

Cr non-bonding AOs

\(T_{2g}\) : \((3dxy, 3dxz, 3dyz)\)
<table>
<thead>
<tr>
<th>Symmetry</th>
<th>AOs</th>
<th>SALCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g</td>
<td>{ dx^2-y^2 }</td>
<td>{ }</td>
</tr>
<tr>
<td>T_{1u}</td>
<td>{ p_x, p_y, p_z }</td>
<td>{ }</td>
</tr>
<tr>
<td>A_{1g}</td>
<td>s</td>
<td>{ }</td>
</tr>
</tbody>
</table>
6. Central-atom AOs and pendant-atom SALCs with the same symmetry species will form both bonding and antibonding LCAO-MOs.

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>bonding MOs</th>
<th>anti-bonding MOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{1u}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{1g}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Central-atom AOs or pendant-atom SALCs with unique symmetry (no species match between AOs and SALCs) form nonbonding MOs.
SALCS for Common Geometries (*σ* bonding)

CN = 2

C_{2v}

B_1

A_1

$D_{\infty h}$

Σ_u^+

Σ_g^+
SALCS for Common Geometries (σ bonding)

$\text{CN} = 3$

C_{3v}

E

A_1

D_{3h}

E'

A_1'
SALCS for Common Geometries (*σ bonding*)

$CN = 3$

D_{3h}

E

A_1'
SALCS for Common Geometries (\(\sigma\) bonding)

\(\text{CN} = 4\)

\(T_d\)

\(T_2\)

\(A_1\)
SALCS for Common Geometries (σ bonding)

CN = 4

D_{4h}

B_{1g}

E_u

A_{1g}
SALCS for Common Geometries (σ bonding)

CN = 5

D_{3h}

E

$A_{2''}$

$A_{1'}$

$A_{1'}$
SALCS for Common Geometries \((\sigma\text{bonding})\)

CN = 6

\(O_h\)

\[E_g\]

\[T_{2g}\]

\[A_{1g}\]
Construction of MO diagrams for Transition Metal Complexes

\[\pi \] bonding complexes
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

- Each vector shifted through space contributes 0 to the character for the class.
- Each non-shifted vector contributes 1 to the character for the class.
- Each vector shifted to the negative of itself (180°) contributes -1 to the character for the class.
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

point group = O_h

\[
\begin{array}{cccccccccc}
& O_h & E & 8C_3 & 6C_2 & 6C_4 & 3C_2 & i & 6S_4 & 8S_6 & 3\sigma_h & 6\sigma_d \\
\hline
\Gamma_\pi & & & & & & & & & & & \\
A_{1g} & & & & & & & & & & & \\
A_{2g} & & & & & & & & & & & \\
E_g & & & & & & & & & & & \\
T_{1g} & & & & & & & & & & & \\
T_{2g} & & & & & & & & & & & \\
A_{1u} & & & & & & & & & & & \\
A_{2u} & & & & & & & & & & & \\
E_u & & & & & & & & & & & \\
T_{1u} & & & & & & & & & & & \\
T_{2u} & & & & & & & & & & & \\
\hline
\Sigma & & & & & & & & & & & \\
\Sigma/h & & & & & & & & & & & \\
\hline
\end{array}
\]

$\Gamma_\pi =$

$d_\Gamma =$
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

The point group is O_h.

<table>
<thead>
<tr>
<th>O_h</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6C_2$</th>
<th>$6C_4$</th>
<th>$3C_2$</th>
<th>i</th>
<th>$6S_4$</th>
<th>$8S_6$</th>
<th>$3\sigma_h$</th>
<th>$6\sigma_d$</th>
<th>Σ</th>
<th>Σ/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_π</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_{1g}</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>A_{2g}</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>E_g</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{1g}</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{2g}</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>A_{1u}</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>A_{2u}</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>E_u</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{1u}</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>T_{2u}</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
</tbody>
</table>

$\Gamma_\pi = T_{1g} + T_{2g} + T_{1u} + T_{2u}$

$d_{\Gamma} = 3 + 3 + 3 + 3 = 12$
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

\[\Gamma_\sigma = A_{1g} + E_g + T_{1u} \]

point group = O_h

\[\Gamma_\pi = T_{1g} + T_{2g} + T_{1u} + T_{2u} \]

point group = O_h
Example: Constructing a MO for Chromium Hexacarbonyl, Cr(CO)$_6$

$\Gamma_{\sigma} = A_{1g} + E_g + T_{1u} \quad \Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$

Cr σ-bonding AOs

Cr π-bonding AOs

Cr non-bonding AOs
Example: Constructing a MO diagram for Chromium Hexacarbonyl, Cr(CO)$_6$

\[\Gamma_\sigma = A_{1g} + E_g + T_{1u} \]

\[\Gamma_\pi = T_{1g} + T_{2g} + T_{1u} + T_{2u} \]

Cr \(\sigma \)-bonding AOs

\[A_{1g} : 4s \]
\[T_{1u} : (4p_x, 4p_y, 4p_z) \]
\[E_g : (3d^{\text{x}^2-\text{y}^2}, 3dz^2) \]

Cr non-bonding AOs

\[T_{2g} : (3dxy, 3dxz, 3dyz) \]

Cr \(\pi \)-bonding AOs

\[T_{2g} : (3dxy, 3dxz, 3dyz) \]
\[T_{1u} : (4p_x, 4p_y, 4p_z) \]

- \(T_{2g} \) previously considered non-bonding in \(\sigma \)-bonding scheme
- \(T_{1u} \) combines with \(T_{1u} \) SALC in in \(\sigma \)-bonding scheme
- \(T_{1g}, \ T_{2u} \) \(\pi \)-SALCs are non-bonding
Symmetry

T_{1g}

T_{1u}

T_{2g}

T_{2u}

SALCs

z

x

y
- T_{1u} AOs overlap more effectively with $T_{1u} \sigma$-SALC thus the π-bonding interaction is considered negligible or at most only weakly-bonding.
T_{2g} π-MOs

dx_y

dx_z

dy_z

dx_z, dy_z or dx_y
Dewar-Chatt-Duncanson model

\[\text{Metal } d_z^2 \xrightarrow{\sigma \text{ bond}} \text{carbonyl} \]

\[\text{Metal } d_x^2 - d_y^2 \xrightarrow{\sigma \text{ bond}} \text{carbonyl} \]

\[\text{Metal } d_y \xrightarrow{\pi\text{-back-donation}} \text{carbonyl} \]

\[\nu(\text{CO}) \text{ cm}^{-1} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\nu(\text{CO}) \text{ cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Ti(CO)}_6]^2-)</td>
<td>1748</td>
</tr>
<tr>
<td>([\text{V(CO)}_6]^+)</td>
<td>1859</td>
</tr>
<tr>
<td>(\text{Cr(CO)}_6)</td>
<td>2000</td>
</tr>
<tr>
<td>([\text{Mn(CO)}_6]^+)</td>
<td>2100</td>
</tr>
<tr>
<td>([\text{Fe(CO)}_6]^{2+})</td>
<td>2204</td>
</tr>
</tbody>
</table>
Summary of π-bonding in O_h complexes

π donor ligands result in $L \rightarrow M$ π bonding, a smaller Δ_o favoring high spin configurations and a decreased stability.

π acceptor ligands result in $M \rightarrow L$ π bonding, a larger Δ_o favoring low spin configurations with an increased stability.