1. (25 points)

a) Given the set of operations C_4 , σ_h determine the other operations that must be present to form a complete point group.

If C_4 exists C_4^2 (= C_2), C_4^3 and C_4^4 (= E) also exist.

$$C_4 \sigma_h = S_4$$

$$C_2 \sigma_h = S_2 = i$$

$$C_4^3 \sigma_h = S_4^3$$

b) Identify the point group for the complete set of operations.

$$C_{4h}: E C_4 C_4^3 C_2 i S_4 S_4^3 \sigma_h$$

c) What is the order of the group?

$$h = 8$$

d) Name at least three possible sub-groups?

Possible subgroups have g = 4,2,1.

$$g = 4$$

$$C_{4} \{E, C_{4}, C_{4}^{3}, C_{2}\}$$

$$S_{4} \{E, C_{2}, S_{4}, S_{4}^{3}\}$$

$$C_{2h} \{E, C_{2}, i, \sigma_{h}\}$$

$$g = 2$$

$$C_{2} \{E, C_{2}\}$$

$$C_{i} \{E, i\}$$

$$C_{s} \{E, \sigma_{h}\}$$

$$g = 1$$

$$C_{1} \{E\}$$

2. (25 points)

Complete the D_{2h} multiplication table below.

Verify that any **one** of its reflection operations does not belong to the same class as any other reflection.

D_{2h}	\boldsymbol{E}	$C_{2(z)}$	$C_{2(y)}$	$C_{2(\mathbf{x})}$	i	$\sigma_{(xy)}$	$\sigma_{(xz)}$	$\sigma_{\!$
E	E	$C_{2(z)}$	$C_{2(y)}$	$C_{2(x)}$	i	$\sigma_{(xy)}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle XZ})}$	$\sigma_{\!\scriptscriptstyle (\mathrm{yz})}$
$C_{2(z)}$	$C_{2(z)}$	E	$C_{2(x)}$	$C_{2(y)}$	$\sigma_{\!\scriptscriptstyle ({ m xy})}$	i	$\sigma_{\! ext{(yz)}}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle { m XZ}})}$
$C_{2(y)}$	$C_{2(y)}$	$C_{2(x)}$	E	$C_{2(z)}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle XZ})}$	$\sigma_{\! ext{(yz)}}$	i	$\sigma_{(xy)}$
$C_{2(\mathbf{x})}$	$C_{2(x)}$	$C_{2(y)}$	$C_{2(z)}$	E	$\sigma_{\! ext{(yz)}}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle XZ})}$	$\sigma_{(xy)}$	i
i	i	$\sigma_{\!\scriptscriptstyle ({ m xy})}$	$\sigma_{\!\scriptscriptstyle (xz)}$	$\sigma_{\! ext{(yz)}}$	E	$C_{2(z)}$	$C_{2(y)}$	$C_{2(x)}$
$\sigma_{(xy)}$	$\sigma_{(xy)}$	i	$\sigma_{\! ext{(yz)}}$	$\sigma_{\!\scriptscriptstyle (xz)}$	$C_{2(z)}$	E	$C_{2(x)}$	$C_{2(y)}$
$\sigma_{(xz)}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle XZ})}$	$\sigma_{\!\! ext{(yz)}}$	i	$\sigma_{(xy)}$	$C_{2(y)}$	$C_{2(x)}$	E	$C_{2(z)}$
$\sigma_{(yz)}$	$\sigma_{\! ext{(yz)}}$	$\sigma_{\!\scriptscriptstyle ({\scriptscriptstyle XZ})}$	$\sigma_{(xy)}$	i	$C_{2(x)}$	$C_{2(y)}$	$C_{2(z)}$	E

The multiplication table is efficiently completed by considering the operator matrices for each operation and how they transform the x, y, z vectors :

$$[E] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

$$\begin{bmatrix} i \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -\mathbf{x} \\ -\mathbf{y} \\ -\mathbf{z} \end{bmatrix}$$

$$\begin{bmatrix} C_{2(\mathbf{x})} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ -\mathbf{y} \\ -\mathbf{z} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{(xy)} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$[C_{2(\mathbf{y})}] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -\mathbf{x} \\ \mathbf{y} \\ -\mathbf{z} \end{bmatrix}$$

$$[\sigma_{(xz)}]\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$$

$$[C_{2(\mathbf{z})}] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} -\mathbf{x} \\ -\mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{(yz)} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -x \\ y \\ z \end{bmatrix}$$

The operator matrices can be summarized as the reducible representation Γ_{m}

D_{2h}	E	$C_{2(z)}$	$C_{2(y)}$	$C_{2(x)}$	i	$\sigma_{({ m xy})}$	$\sigma_{ ext{(XZ)}}$	$\sigma_{ ext{(yz)}}$
$\Gamma_{ m m}$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $

Multiplication of each operation A by the identity E results in the identical operation A, e.g.

$$[E][C_{2(x)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(x)}]$$
...etc.

Self binary combinations of each operation results in the identity operation E, e.g.

$$[\sigma_{(xy)}][\sigma_{(xy)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [E]$$
...etc.

The following binary combinations need then to be considered:

$$[C_{2(z)}] [C_{2(y)}] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(x)}]$$

$$[C_{2(z)}][C_{2(x)}] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(y)}]$$

$$[C_{2(y)}][C_{2(x)}] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [C_{2(z)}]$$

$$[\sigma_{(xy)}] [\sigma_{(xz)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(x)}]$$

$$[\sigma_{(xy)}][\sigma_{(yz)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(y)}]$$

$$[\sigma_{(xz)}] [\sigma_{(yz)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [C_{2(z)}]$$

$$[C_{2(z)}][i] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [\sigma_{(xy)}]$$

$$[C_{2(y)}][i] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [\sigma_{(xz)}]$$

$$[C_{2(\mathbf{x})}][i] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [\sigma_{(\mathbf{yz})}]$$

$$[\sigma_{(xy)}][i] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [C_{2(z)}]$$

$$[\sigma_{(xz)}][i] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(y)}]$$

$$[\sigma_{(yz)}][i] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [C_{2(x)}]$$

$$[\sigma_{(xy)}][C_{2(z)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = [i]$$

$$[\sigma_{(xz)}][C_{2(z)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [\sigma_{(yz)}]$$

$$[\sigma_{(yz)}][C_{2(z)}] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [\sigma_{(xz)}]$$

Likewise

$$[\sigma_{(xy)}][C_{2(y)}] = [\sigma_{(yz)}]$$
 $[\sigma_{(xy)}][C_{2(x)}] = [\sigma_{(xz)}]$
 $[\sigma_{(xz)}][C_{2(y)}] = [i]$ $[\sigma_{(xz)}][C_{2(x)}] = [\sigma_{(xy)}]$
 $[\sigma_{(yz)}][C_{2(y)}] = [\sigma_{(xz)}]$ $[\sigma_{(yz)}][C_{2(x)}] = [i]$

As the point group D_{2h} is an Abelian group all of the above combinations *commute* allowing us to easily fill the remaining of the multiplication table.

To verify that $\sigma_{(xy)}$ does not belong to the same class of $\sigma_{(xz)}$ or $\sigma_{(yz)}$ it similarity transforms must be derived using all of the symmetry operations of D_{2h}

$$E \ \sigma_{(xy)} E = E \ \sigma_{(xy)} = \sigma_{(xy)}$$

$$C_{2(z)} \ \sigma_{(xy)} C_{2(z)} = C_{2(z)} i = \sigma_{(xy)}$$

$$C_{2(y)} \ \sigma_{(xy)} C_{2(y)} = C_{2(y)} \ \sigma_{(yz)} = \sigma_{(xy)}$$

$$C_{2(x)} \ \sigma_{(xy)} C_{2(x)} = C_{2(x)} \ \sigma_{(xz)} = \sigma_{(xy)}$$

$$i \ \sigma_{(xy)} i = i \ C_{2(z)} = \sigma_{(xy)}$$

$$\sigma_{(xy)} \ \sigma_{(xy)} \ \sigma_{(xy)} \ \sigma_{(xy)} = \sigma_{(xy)} E = \sigma_{(xy)}$$

$$(xy) = (xy) = (xy) = (xy) = (xy)$$

$$\sigma_{(xz)} \sigma_{(xy)} \sigma_{(xz)} = \sigma_{(xz)} C_{2(x)} = \sigma_{(xy)}$$

$$\sigma_{(yz)} \sigma_{(xy)} \sigma_{(yz)} = \sigma_{(yz)} C_{2(y)} = \sigma_{(xy)}$$

Thus, there are no other operations in the same class as $\sigma_{(xy)}$.

(20 points)
 Predict the representative character for the following combination of Mulliken symbols and symmetry class for the given point groups.

	point group	Mulliken symbol	class	character
(a)	D_{5d}	A_{2g}	i	1
(b)	<i>C</i> ₈	В	<i>C</i> ₈	-1
(c)	D_2	B_2	$C_{2(x)}$	-1
(d)	<i>C</i> _{6v}	A_2	$\sigma_{\!\scriptscriptstyle V}$	-1
(e)	D_{3h}	$A_2^{'}$	$\sigma_{\!\scriptscriptstyle h}$	1
(f)	<i>C</i> _{6v}	E_2	<i>C</i> ₃	-1
(g)	<i>C</i> _{6v}	E_2	Ε	2
(h)	C_{5h}	$A^{''}$	$\sigma_{\!h}$	-1

4. (20 points)

Reduce the following representation into its component irreducible representations:

Using the following formula we can carry out a systematic reduction to determine how many times (n) each irreducible representation contributes to the reducible representation.

$$n_t = \frac{1}{h} \sum_c g_c \chi_t \chi_r$$

D_{3h}	E	$2C_3$	3 <i>C</i> ₂	σ_h	$2S_3$	$3\sigma_v$	Σ	Σ/h	h = 12
$\Gamma_{\rm r}$	5	2	1	3	0	3			
A_1	5	4	3	3	0	9 -9 0 -9 9	24	2	
A_2	5	4	-3	3	0	-9	0	0	
E	10	-4	0	6	0	0	24	2	
A_1 "	5	4	3	-3	0	-9	0	0	
A_2 "	5	4	-3	-3	0	9	12	1	
E"	10	-4	0	-6	0	0	0	0	

Thus, the reducible representation Γ_r is composed of the following irreducible components:

$$\Gamma_{\rm r} = 2 A_1' + E' + A_2''$$

To check our answer the dimension of $\Gamma_{\rm r}$ must be calculated.

$$d_{\rm r} = (2)(1) + (1)(2) + (1)(1) = 5$$

i.e., $d_r = 5$ which is the dimension of its character for the identity operation in Γ_r .

5. (30 points)

Consider the following sequential structural changes (I ightarrow II ightarrow III).

Indicate

a) The point group of each structure.

$$D_{4h} \longrightarrow D_{3h} \longrightarrow C_{3v}$$

b) Whether structures I and II of each series bear any group-subgroup relationship to each other.

 D_{4h} and D_{3h} bear no group-subgroup relationship to each other.

c) Whether structures II and III of each series bear any group-subgroup relationship to each other.

 C_{3v} is a subgroup of D_{3h} .

d) Whether each transition represents an ascent or descent in symmetry.

$$D_{4h}$$
 descent D_{3h} descent C_{3v} $(h = 16)$ $(h = 12)$ $(h = 6)$

e) Specific symmetry elements lost or gained following the transition from II \rightarrow III.

$$D_{3h} = \frac{\text{lost}}{\text{gained}} \quad C_{3v}$$

$$(h = 12) \qquad (h = 6)$$

$$D_{3h}$$
 E, C_3 , C_3^2 , $3C_2$, S_3 , S_3^2 , $3\sigma_v$, σ_h
 C_{3v} E, C_3 , C_3^2 , $3\sigma_v$

f) Construct a correlation table(s) for any group-subgroup pair present.

As the $A_1^{"}$ representation in D_{3h} has no direct products associated with it, its correlating representation in $C_{3\nu}$ must be identified using the characters of from each character table and their group-subgroup relationship.

	D_{3h}								
$x^2 + y^2, z^2$	A_1	1	1	1	1	1	1	A_1	$z, x^2 + y^2, z^2$ R_z $(R_x, R_y), (x, y), (xz, yz), (x^2 - y^2, xy)$ R_z $z, x^2 + y^2, z^2$ $(R_x, R_y), (x, y), (xz, yz), (x^2 - y^2, xy)$
R_z	A_2	1	1	-1	1	1	-1	A_2	R_z
$(x,y),(x^2-y^2,xy)$	E	2	-1	0	2	-1	0	Ε	$(\mathbf{R}_x, \mathbf{R}_y), (x, y), (xz, yz), (x^2 - y^2, xy)$
	A_1 "	1	1	1	-1	-1	-1	A_2	R_z
z	A_2 "	1	1	-1	-1	-1	1	A_1	$z, x^2 + y^2, z^2$
$(\boldsymbol{R}_x, \boldsymbol{R}_y), (xz, yz)$	E "	2	-1	0	-2	1	0	E	$(\mathbf{R}_x, \mathbf{R}_y), (x, y), (xz, yz), (x^2 - y^2, xy)$