Systematic Reduction of Irreducible Representations

- For complex molecules with a large dimension reducible representation, identification of the component irreducible representations and their quantitative contributions is not straight forward.
- Fortunately, reducing such a representation for a group of finite order can be carried out systematically using the following equation

$$n_t = \frac{1}{h} \sum_c g_c \chi_t \chi_r$$

- n_i : number of times the irreducible representation *i* occurs in the reducible representation
- *h* : order of the group
- c : class of operations
- g_c : number of operations in the class
- χ_i : character of the irreducible representation for the operations of the class
- χ_r : character of the reducible representation for the operations of the class
- The work of carrying out a systematic reduction is better organized by using the tabular method, rather than writing out the individual equations for each irreducible representation

Tabular Method

- To carry out the reduction, construct a work sheet with rows for each species, columns for each product $g_c \chi_i \chi_r$, a column for the sum of all $g_c \chi_i \chi_r$ products for each species (Σ), and a final column for $n_i = \Sigma g_c \chi_i \chi_r / h$.
- Sample reducible representation worksheet for the T_d point group given the reducible representation Γ_r

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$		
Γ_r	8	-1	4	-2	0	Σ	Σ /24
A_1							
A_2							
E							
T_1							
T_2							

• Products $g_c \chi_i \chi_r T_d$:

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

Character table for T_d (without last column for vector transformations and direct products)

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$		
Γ_r	8	-1	4	-2	0	Σ	<u>Σ</u> /24
A_1	8	-8	12	-12	0	0	0
A_2	8	-8	12	12	0	24	1
E	16	8	24	0	0	48	2
T_1	24	0	-12	-12	0	0	0
T_2	24	0	-12	12	0	24	1

Thus $\Gamma_i = A_2 + 2E + T_2$

• Checking our solution $\Gamma_i = A_2 + 2E + T_2$

$$d = 1 + 2(2) + 3 = 8 = d_r$$

• Does Γ_r compute ?

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$	_	T_d	E	8 <i>C</i> ₃	3 <i>C</i> ₂	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1	- 33	A_2	1	1	1	-1	-1
A_2	1	1	1	-1	-1		E	2	-1	2	0	0
E	2	-1	2	0	0		E	2	-1	2	0	0
T_1	3	0	-1	1	-1	10	T_2	3	0	-1	-1	1
T_2	3	0	-1	-1	1	8	Γ_r	8	-1	4	-2	0

Trouble Shooting

- The sum across a row is not divisible by the order *h*.
 - An error has been made in one or more of the products, probably while changing signs or multiplying from one row to the next; e.g.,

T_d	Ε	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$		
Γ_r	8	-1	4	-2	0	Σ	<u>Σ</u> /24
A_1	8	-8	12	-12	0	0	0
A_2	8	8	12	12	0	40	

> An error was made in generating the original reducible representation; e.g.,

T_d	Ε	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$		
Γ_r	8	-1	4	-1	0	Σ	$\Sigma/24$
A_1	8	-8	12	-6	0	6	

You forgot to multiply by the number of operations in the class when generating the first row; e.g.,

T_d	Ε	8 <i>C</i> ₃	3 <i>C</i> ₂	6 <i>S</i> ₄	$6\sigma_d$		
Γ_r	8	-1	4	-2	0	Σ	<u>Σ</u> /24
A_1	8	-8	12	-2	0	10	

Trouble Shooting (contd.)

- The sum of the dimensions of the found irreducible representations does not equal the dimension of the reducible representation.
 - One or more of the lines for individual species is faulty in a way that happens to be divisible by h; e.g.,

T_d	Ε	$8C_{3}$	$3C_{2}$	$6S_4$	$6\sigma_d$		
Γ_r	8	-1	4	-2	0	Σ	$\Sigma/24$
A_1	8	-8	12	-12	0	0	0
A_2	8	-8	12	12	0	24	1
Ε	16	8	24	0	0	48	2
T_1	24	0	-12	-12	0	0	0
T_2	24	0	12	12	0	48	2

 $d = 1 + 2(2) + 2(3) = 11 \neq d_r$

Reducing Representations with Imaginary Characters

- Certain groups $(C_n, n \ge 3; C_{nh}, n \ge 3; S_{2n}; T; T_h)$ have irreducible representations that contain the imaginary integer $i = (-1)^{1/2}$.
- Imaginary irreducible representations are always shown as complex conjugate pairs on successive lines of the character table and are given a shared Mulliken symbol designation of a doubly-degenerate representation (e.g., *E*).
- Both representations of a complex-conjugate pair are individual non-degenerate representations in their own right.
- For real physical problems, if one imaginary representation is contained in the reducible representation for a property, then the complex conjugate for that representation must also be present in equal number.
- For convenience, complex conjugate pairs of representations are often added together to give a real-character representation, which is a reducible representation with $d_r = 2$.
- We will always designate such combined real-character representations with braces around the Mulliken symbol of the complex conjugate pair; e.g., *{E}*.
- If a combined real-character representation is used with the standard reduction formula, the result given for the number of occurrences of the combined representataion (n_i) will be twice its true value.
- If using the standard reduction formula, divide the result for any combined real-character representation of a complex-conjugate pair by 2.

- For example, let us test the reducible representation in $C_{4h} \Gamma_r = 2B_g + \{E_g\} + A_u$
- First we must generate the complete set of characters for Γ_r according to the C_{4h} character table

C_{4h}	Ε	C_4	C_2	C_{4}^{3}	i	S_{4}^{3}	σ_h	S_4
B_{g}	1	-1	1	-1	1	-1	1	-1
B_{g}	1	-1	1	-1	1	-1	1	-1
$\{E_g\}$	2	0	-2	0	2	0	-2	0
A_u	1	1	1	1	-1	-1	-1	-1
Γ_r	5	-1	1	-1	3	-3	-1	-3

• Using the tabular method we then carry out a systematic reduction by generating a worksheet:

C_{4h}	E	C_4	C_2	C_{4}^{3}	i	S_{4}^{3}	σ_h	S_4			
Γ_r	5	-1	1	-1	3	-3	-1	-3	Σ	$\Sigma/8$	
A_{g}	5	-1	1	-1	3	-3	-1	-3	0	0	
B_{g}	5	1	1	1	3	3	-1	3	16	2	
$\{E_g\}$	10	0	-2	0	6	0	2	0	16	2	rs 1
A_u	5	-1	1	-1	-3	3	1	3	8	1	
B_u	5	1	1	1	-3	-3	1	-3	0	0	
$\{E_u\}$	10	0	-2	0	-6	0	-2	0	0	0	₽ \$7 ()

• Dividing the complex contribution by 2 we correctly obtain $\Gamma_r = 2B_g + \{E_g\} + A_u$

Group-Subgroup Relationships

- When a structural change occurs, there is often a group-subgroup relationship between the original and new structures.
- If the new structure belongs to a point group that is a subgroup of the point group of the original structure, then descent in symmetry has occurred.
- Descent in symmetry may cause formerly degenerate properties to become distinct nondegenerate properties.
- If the new structure belongs to a higher-order group of which the old structure's point group is a subgroup, then ascent in symmetry has occurred.
- Ascent in symmetry may cause formerly distinct non-degenerate properties to become degenerate.
- Observing changes in degeneracy (e.g., splitting or coalescing of bands in spectra) can be revealing of structure changes.
- Knowledge of group-subgroup relationships can simplify the work of group theory applications by solving the problem in a smaller-order subgroup and correlating the results to the true group.

O_h Subgroups

 Groups that have a group-subgroup relationship have related representations whose characters are the same for the shared operations in the two groups.

Group-Subgroup Relationships

• Between a group and any of its subgroups, representations arising from the same vector basis will have the same $\chi(r)$ values for all operations that occur in both groups.

D_{4h}	E	$2C_4$	C_2	$2C_{2}'$	2 <i>C</i> ₂ "	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$	C_{4v}
A_{1g}	1	1	1						1	1	A_1
A_{2g}	1	1	1						-1	-1	A_2
B_{1g}	1	-1	1						1	-1	B_1
B_{2g}	1	-1	1						-1	1	B_2
E_g	2	0	-2						0	0	E
A_{1u}	1	1	1						-1	-1	A_2
A_{2u}	1	1	1						1	1	A_1
B_{1u}	1	-1	1						-1	1	B_2
B_{2u}	1	-1	1						1	-1	B_1
E_u	2	0	-2						0	0	E

Characters for shared operations in D_{4h} and C_{4v}

Correlation diagram for D_{4h} and C_{4v}

• Those species in both groups that are not associated with a listed unit vector transformation share a vector basis that is simply not one of those routinely listed.

Lifting Degeneracies

 Degenerate representations may be spit into lower-order representations (non-degenerate or a mixture of double and non-degenerate representations) in a subgroup that is too small to have higher-order degeneracies.

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$	
	E		C_2	σ_v, σ_v'		C_{2v}
A_1	1		1	1		A_1
A_2	1		1	-1		A_2
B_1	1		1	1		A_1
B_2	1		1	-1		A_2
Ε	2		-2	0		$B_1 + B_2$

Characters for shared operations in C_{4v} and C_{2v}

• The characters of *E* in $C_{4\nu}$ form a reducible representation in $C_{2\nu}$, Γ_E , which reduces to $B_1 + B_2$.

C_{2v}	Ε	C_2	σ_v	σ_v
B_1	1	-1	1	-1
B_2	1	-1	-1	1
E	2	-2	0	0

Correlation diagram for C_{4v} and C_{2v}

Reducing Representations of $C_{\infty v}$ and $D_{\infty h}$

• The standard reduction equation cannot be used with groups that have $h = \infty$, like $C_{\infty v}$ and $D_{\infty h}$.

Work-around technique:

Set up and solve the problem in a finite subgroup

e.g., C_{2v} for $C_{\infty v}$, D_{2h} for $D_{\infty h}$.

- Correlate the results in the subgroup to the true infinite-order group, using either a partial correlation table or by matching shared vectors in the related groups.
- Complete correlations to an infinite group are not possible, because there are an infinite number of irreducible representations.
- A partial correlation table is sufficient, because only a limited number of irreducible representations in either $C_{\infty\nu}$ or $D_{\infty h}$ are related to real physical properties.

$C_{\scriptscriptstyle \infty arphi}$	C_{2v}
$A_1 = \Sigma^+$	A_1
$A_2 = \Sigma^{\text{-}}$	A_2
$E_1 = \Pi$	$B_1 + B_2$
$E_2 = \Delta$	$A_1 + A_2$

$C_{\scriptscriptstyle\infty u}$	C_{2v}	-	$D_{{}^{\infty}h}$	D_{2h}
$A_1 = \Sigma^+$	A_1		Σ_{g}^{+}	A_g
$A_2 = \Sigma^-$	A_2		Σ_g^{-}	$oldsymbol{B}_{1g}$
$E_1 = \Pi$	$B_1 + B_2$		Π_g	$B_{2g} + B_{3g}$
$E_2 = \Delta$	$A_1 + A_2$		Δ_g	$A_g + B_{1g}$
	-		Σ_u^{+}	B_{1u}
			Σ_u^{-}	A_u
			Π_u	$B_{2u} + B_{3u}$
			Δ_u	$A_u + B_{1u}$

Direct Products of Irreducible Representations

• Any product of irreducible representations is also a representation of the group.

$$\Gamma_{\rm a}\,\Gamma_{\rm b}\,\Gamma_{\rm c}=\Gamma_{\rm abc}$$

• The character $\chi(R)$ for an operation R in a product representation is the product of the characters of R in the component representations.

$$\chi(R)_{\rm a} \chi(R)_{\rm b} \chi(R)_{\rm c} = \chi_{\rm abc}(R)$$

• The dimension of a product representation, d_p , is the product of the dimensions of the component representations

$$d_p = \prod_i d_i$$

1. If all the combined irreducible representations are non-degenerate, then the product will be a non-degenerate representation, too.

e.g., a partial character table for C_{4v}

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

The direct product $B_1 B_2$ results in the irreducible representation A_2

C_{4v}	Ε	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
A_2	1	1	1	-1	-1

2. The product of a non-degenerate representation and a degenerate representation is a degenerate representation.

e.g., a partial character table for C_{4v}

C_{4v}	E	$2C_{4}$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
Ε	2	0	-2	0	0

The direct product $B_2 E$ results in the irreducible representation E

C_{4v}	E	$2C_{4}$	C_2	$2\sigma_v$	$2\sigma_d$
B_2	1	-1	1	-1	1
Ε	2	0	-2	0	0
E	2	0	-2	0	0

3. The direct product of any representation with the totally symmetric representation is the representation itself.

e.g., a partial character table for C_{4v}

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

The direct product $A_1 E$ results in the irreducible representation E

C_{4v}	Ε	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
Ε	2	0	-2	0	0
E	2	0	-2	0	0

4. The direct product of degenerate representations is a reducible representation.

e.g., a partial character table for C_{4v}

C_{4v}	Ε	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

The direct product *E E* results in the reducible representation Γ_{p}

C_{4v}	E	$2C_{4}$	C_2	$2\sigma_v$	$2\sigma_d$
E	2	0	-2	0	0
E	2	0	-2	0	0
Γ_p	4	0	4	0	0

Systematic reduction gives $\Gamma_p = A_1 + A_2 + B_1 + B_2$

5. The direct product of an irreducible representation with itself is or contains the totally symmetric representation.

e.g., a partial character table for C_{4v}

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

The non-degenerate self product $B_1 B_1$ results in the totally symmetric representation A_1

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
B_2	1	-1	1	-1	1
B_2	1	-1	1	-1	1
A_1	1	1	1	1	1

The degenerate self product $\Gamma_E \Gamma_E = \Gamma_p = A_1 + A_2 + B_1 + B_2$

5. Only the direct product of a representation with itself is or contains the totally symmetric representation. Moreover, the self-product contains the totally symmetric representation only once

Proof: How many times does the totally symmetric representation occur in any direct product?

$$n_t = \frac{1}{h} \sum_c g_c \chi_t \chi_r$$

where $\chi_i = \chi_A = 1$ for all *R* of the totally symmetric representation,

$$hn_A = \sum_c g_c \chi_t \chi_r = \sum_c g_c \chi_A \chi_p = \sum_c g_c \chi_p$$

But $\chi_p = \chi_a \chi_b$ for $\Gamma_p = \Gamma_a \Gamma_b$. Also, Γ_a and Γ_b must be orthogonal. Thus,

$$hn_{A} = \sum_{c} g_{c} \chi_{p} = \sum_{c} g_{c} \chi_{a} \chi_{b} = h\delta_{ab}$$
$$hn_{A} = h\delta_{ab}$$

only the self-product contains the totally symmetric representation, and then only once.

Direct Products of Representations with Symmetry or Anti-symmetry to a Specific Operation

In general:

sym × sym = sym

anti-sym × anti-sym = sym

anti-sym × sym = anti-sym

In terms of Mulliken symbols:

 $g \times g = g$ $u \times u = g$ $u \times g = u$ $' \times ' = '$ $'' \times '' = '$ $'' \times '' = ''$