
Systematic Reduction of Irreducible Representations

• For complex molecules with a large dimension reducible representation, identification of the
component irreducible representations and their quantitative contributions is not straight
forward.

• Fortunately reducing such a representation for a group of finite order can be carried out• Fortunately, reducing such a representation for a group of finite order can be carried out
systematically using the following equation

ni : number of times the irreducible representation i occurs in the reducible representationi

h : order of the group

c : class of operations

gc : number of operations in the class

i : character of the irreducible representation for the operations of the class

r : character of the reducible representation for the operations of the class

• The work of carrying out a systematic reduction is better organized by using the tabular• The work of carrying out a systematic reduction is better organized by using the tabular
method, rather than writing out the individual equations for each irreducible representation



Tabular Method

• To carry out the reduction, construct a work sheet with rows for each species, columns for each
product gc χi χr , a column for the sum of all gc χi χr products for each species  and a final
column for ni =  gc χi χr /h.

• Sample reducible representation worksheet for the T point group given the reducible• Sample reducible representation worksheet for the Td point group given the reducible
representation r



• Products gc χi χr Td :

Character table for TCharacter table for Td
(without last column for vector transformations and direct products)

Thus i = A2 + 2E + T2



• Checking our solution i = A2 + 2E + T2

d  =  1 + 2(2) + 3 = 8 = dr

• Does  compute ?• Does r compute ?



• The s m across a ro is not di isible b the order h

Trouble Shooting
• The sum across a row is not divisible by the order h.

 An error has been made in one or more of the products, probably while changing signs
or multiplying from one row to the next; e.g.,

 An error was made in generating the original reducible representation; e.g.,

 You forgot to multiply by the number of operations in the class when generating the first
row; e.g.,



• The s m of the dimensions of the fo nd irred cible representations does not eq al the

Trouble Shooting (contd.)
• The sum of the dimensions of the found irreducible representations does not equal the

dimension of the reducible representation.

 One or more of the lines for individual species is faulty in a way that happens to be divisible
by h; e.g.,

d  =  1 + 2(2) + 2(3) = 11 ≠ dr



Reducing Representations with Imaginary Characters

• Certain groups (Cn , n ≥ 3; Cnh , n ≥ 3; S2n ; T ; Th ) have irreducible representations that contain
the imaginary integer i = (‐1)1/2 .

• Imaginary irreducible representations are always shown as complex conjugate pairs on
successive lines of the character table and are given a shared Mulliken symbol designation of asuccessive lines of the character table and are given a shared Mulliken symbol designation of a
doubly‐degenerate representation (e.g., E ).

• Both representations of a complex‐conjugate pair are individual non‐degenerate
representations in their own right.

• For real physical problems, if one imaginary representation is contained in the reducible
representation for a property, then the complex conjugate for that representation must also be
present in equal number.

• For convenience complex conjugate pairs of representations are often added together to give a• For convenience, complex conjugate pairs of representations are often added together to give a
real‐character representation, which is a reducible representation with dr = 2.

• We will always designate such combined real‐character representations with braces around the
Mulliken symbol of the complex conjugate pair; e.g., {E}.

• If a combined real‐character representation is used with the standard reduction formula, the
result given for the number of occurrences of the combined representataion (ni) will be twice
its true value.

• If using the standard reduction formula divide the result for any combined real‐characterIf using the standard reduction formula, divide the result for any combined real character
representation of a complex‐conjugate pair by 2.



• For example, let us test the reducible representation in C4h r = 2Bg + {Eg} + Au

Fi t t t th l t t f h t f  di t th C h t t bl• First we must generate the complete set of characters for r according to the C4h character table

• Using the tabular method we then carry out a systematic reduction by generating a worksheet:

• Dividing the complex contribution by 2 we correctly obtain r = 2Bg + {Eg} + Au



Group‐Subgroup Relationships

• When a structural change occurs, there is often a group‐subgroup relationship between the
original and new structures.

• If the new structure belongs to a point group that is a subgroup of the point group of the
original structure then descent in symmetry has occurredoriginal structure, then descent in symmetry has occurred.

• Descent in symmetry may cause formerly degenerate properties to become distinct non‐
degenerate properties.

• If the new structure belongs to a higher‐order group of which the old structure’s point group isg g g p p g p
a subgroup, then ascent in symmetry has occurred.

• Ascent in symmetry may cause formerly distinct non‐degenerate properties to become
degenerate.

Ob i h i d ( li i l i f b d i ) b• Observing changes in degeneracy (e.g., splitting or coalescing of bands in spectra) can be
revealing of structure changes.

• Knowledge of group‐subgroup relationships can simplify the work of group theory applications
by solving the problem in a smaller‐order subgroup and correlating the results to the true
group.
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Group‐Subgroup Relationships

• Between a group and any of its subgroups, representations arising from the same vector basis
will have the same χ(r) values for all operations that occur in both groups.

Characters for shared operations in D4h and C4v



Correlation diagram for D4h and C4v
• Those species in both groups that are not associated with a listed unit vector transformation

share a vector basis that is simply not one of those routinely listed.



Lifting Degeneracies

• Degenerate representations may be spit into lower‐order representations (non‐degenerate or a
mixture of double and non‐degenerate representations) in a subgroup that is too small to have
higher‐order degeneracies.

Characters for shared operations in C and CCharacters for shared operations in C4v and C2v

• The characters of E in C form a reducible representation in C  which reduces to B + B• The characters of E in C4v form a reducible representation in C2v , E , which reduces to B1 + B2.



Correlation diagram for C4v and C2v



Reducing Representations of Cv and Dh

• The standard reduction equation cannot be used with groups that have h = , like Cv and Dh.

Work‐around technique:

 d l h bl f b Set up and solve the problem in a finite subgroup

e.g., C2v for Cv , D2h for Dh .

 Correlate the results in the subgroup to the true infinite‐order group, using either a partial
correlation table or by matching shared vectors in the related groups.

 Complete correlations to an infinite group are not possible, because there are an infinite
number of irreducible representations.

 A partial correlation table is sufficient, because only a limited number of irreducible
representations in either Cv or Dh are related to real physical properties.



Partial correlation tables for Cv and Dh



Direct Products of Irreducible Representations

• Any product of irreducible representations is also a representation of the group.

a b c = abc

• The character χ(R) for an operation R in a product representation is the product of the
characters of R in the component representations.

(R)a (R)b (R)c = abc(R)

• The dimension of a product representation, dp, is the product of the dimensions of the
component representations



Relationships of Direct Products

1. If all the combined irreducible representations are non‐degenerate, then the product will be a
non‐degenerate representation, too.

e.g., a partial character table for C4v

The direct product B1 B2 results in the irreducible representation A2



Relationships of Direct Products

2. The product of a non‐degenerate representation and a degenerate representation is a
degenerate representation.

e.g., a partial character table for C4v

The direct product B2 E results in the irreducible representation E



Relationships of Direct Products

3. The direct product of any representation with the totally symmetric representation is the
representation itself.

e.g., a partial character table for C4v

The direct product A1 E results in the irreducible representation E



Relationships of Direct Products

4. The direct product of degenerate representations is a reducible representation.

e.g., a partial character table for C4v

The direct product E E results in the reducible representation p

Systematic reduction gives p = A1 + A2+ B1+ B2



Relationships of Direct Products

5. The direct product of an irreducible representation with itself is or contains the totally
symmetric representation.

e.g., a partial character table for C4v

The non‐degenerate self product B1 B1 results in the totally symmetric representation A1

The degenerate self product E E = p = A1 + A2+ B1+ B2



Relationships of Direct Products

5. Only the direct product of a representation with itself is or contains the totally symmetric
representation. Moreover, the self‐product contains the totally symmetric representation only
once

Proof: How many times does the totally symmetric representation occur in any direct product?

where χi = χA = 1 for all R of the totally symmetric representation,

But p = a b for p = ab . Also, a and b must be orthogonal. Thus,

only the self‐product contains the totally symmetric representation, and then only once.



Direct Products of Representations with Symmetry or 
Anti‐symmetry to a Specific Operation

In general:

Anti‐symmetry to a Specific Operation

sym × sym = sym

anti‐sym × anti‐sym = sym

anti‐sym × sym = anti‐sym

In terms of Mulliken symbols:

g × g = g

u × u = g

u × g = u

‘  × ‘  =  ‘

‘’  × ‘’  =  ‘

‘’  × ‘  =  ‘’


