Bonding in transition metal complexes

• Crystal Field Theory (CFT)

- Assumes electrostatic (ionic) interactions between ligands and metal ions
- Useful for understanding magnetism and electronic spectra

• Valence Bond (VB) Theory

- Assumes covalent M–L bonds formed by ligand electron donation to empty metal hybrid orbitals.
- Useful for rationalizing magnetic properties, but cannot account for electronic spectra.
- Offers little that cannot be covered better by other theories.

• Molecular Orbital (MO) Theory

- Approach using M–L general MOs
- Excellent quantitative agreement, but less useful in routine qualitative discussions
- Ligand Field Theory (LFT)
 - Modified CFT
 - Makes empirical corrections to account for effects of M–L orbital overlap, improving quantitative agreement with observed spectra

MO used for most sophisticated and quantitative interpretations

LFT used for semi-quantitative interpretations

CFT used for everyday qualitative interpretations

CFT energies of d orbitals in an Octahedral (O_h) Complex

- Consider a *spherical field* equivalent to six electron pairs surrounding a central metal ion, M.
- Electron repulsions will perturb the energies of the *five degenerate d orbitals*, making them rise in energy.

• The energies of the t_{2g} orbitals and e_g orbitals, however, depend upon their orientation to the six ligand coordination positions in an O_h ligand field.

- The e_g orbitals have lobes that point at the ligands and so will ascend in energy.
- The t_{2g} orbitals have lobes that lie between ligands and so will descend in energy.

• The energy of the e_g set rises by +3/5 Δ_o (+ 6Dq) while the energy of the t_{2g} set falls by -2/5 Δ_o (- 4Dq) resulting in no net energy change for the system.

 $\Delta_{o} E = E(e_{g}) + E(t_{2g})$ = (2)(+3/5) Δ_{o} + (3)(-2/5) Δ_{o} = (2)(+6Dq) + (3)(-4Dq) = 0

- The magnitude of Δ_0 depends upon both the metal ion and the attaching ligands.
- Magnitudes of Δ_0 are typically ca. 100 400 kJ/mol (ca. 8,375 33,500 cm–1).

Spectrochemical series

strong π donor ligand

strong π acceptor L

Spectrochemical series The colors of TM complexes often arrise from the absorption of visible light that corresponds to the energy gap Δ . Electronic spectra (UV-vis) can often be used to measure Δ directly.

 $I^{-} < Br^{-} < Cl^{-} < N_{3}^{-}, F^{-} < OH^{-} < O_{2}^{-} < H_{2}O < NCS^{-} < py, NH_{3} < en < bpy, phen < NO_{2}^{-} < CH_{3}^{-}, C_{6}H_{5}^{-} < CO, H^{-} < O_{2}^{-} < H_{2}O < NCS^{-} < py, NH_{3} < en < bpy, phen < NO_{2}^{-} < CH_{3}^{-}, C_{6}H_{5}^{-} < CO, H^{-} < O_{2}^{-} < H_{2}O < NCS^{-} < Py, NH_{3} < en < bpy, phen < NO_{2}^{-} < CH_{3}^{-}, C_{6}H_{5}^{-} < CO, H^{-} < H_{2}O < NCS^{-} < Py, NH_{3} < en < hpy, phen < NO_{2}^{-} < H_{3}O <$

_____ π-donor low Δ "low field ligand" π -acceptor/strong σ -donor high Δ ------"high field ligand"

- Electrons fill the d orbitals starting with the t_{2g} set in accordance with
 - > The aufbau principle
 - The Pauli exclusion principle
 - Hund's rule of maximum multiplicity
- Spins of successively added electrons are parallel so long as the Pauli exclusion principle allows.
- At the point when the set of t_{2g} orbitals is half filled, an additional electron must pair if its is to occupy one of the orbitals of the degenerate set.
- But if the mean pairing energy (P) is greater than Δ_{o} , a lower energy state will result by putting the electron in the higher e_{g} level.

Total pairing energy $\Pi = \Pi_c + \Pi_e$

High spin vs. low spin electron configuration

- If Δ is low enough, electrons may rearrange to give a "high spin" configuration to reduce electron- electron repulsion that happens when they are paired up in the same orbital.
- In 1st row metals complexes, low-field ligands (strong π donors) favor high spin configurations whereas high field ligands (π-acceptors/ strong σ donors) favor low spin.
- The majority of 2nd and 3rd row metal complexes are low-spin irrespective of their ligands (greater M-L overlap; decreased Π_e due to larger volume of d orbitals).

- Low-oxidation state complexes also tend to have lower Δ than high-oxidation state complexes.
- High oxidation state \rightarrow increased $\chi \rightarrow$ increased $\Delta \rightarrow$ low-spin configuration

 $Mn^{2+} < V^{2+} < Co^{2+} < Fe^{2+} < Ni^{2+} < Fe^{3+} < Co^{3+} < Mn^{4+} < Rh^{3+} < Ir^{3+} < Pt^{4+}$

 \checkmark 1st row/low-valent low Δ

2nd,3rd row/high-valent \longrightarrow high Δ

High- and Low-Spin Configurations for $ML_6 O_h$

	spin	n spin	spin	spin	Multiplicity = 2S + 1			
	d ⁶ high	d^{6} low	d^7 high	d^7 low	d^{8}	d^9	d^{10}	
t_{2g}	1 1 1 L							
e_g	<u> 1 </u>		<u> 1 </u>		<u> 1 </u>	_11_L		
	d^{1}	d^2	d^{3}	d ⁴ high spin	d ⁴ low spin	d ⁵ high spin	d ⁵ low spin	
<i>t</i> _{2g}		<u>1</u> 1	<u>1</u> <u>1</u> <u>1</u>	<u>1</u> <u>1</u> <u>1</u>	1 1 1 L	<u>1</u> <u>1</u> 1		
e_g				1		<u>1</u> 1		

Molecular orbital theory

- A molecular orbital (MO) is a mathematical function that describes the wave-like behavior of an electron in a molecule, i.e. a wavefunction (ψ). This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.
- MO theory is a method for determining molecular structure in which *electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.*
- Every molecule has a set of MOs, in which it is assumed that *each MO wave function ψ may be written as a simple weighted sum of the n constituent atomic orbitals*.
- MOs are constructed in this way via a *linear combination of atomic orbitals* (LCAO)
 a quantum superposition, if you like, of atomic orbitals.
- The MOs resulting from the LCAO calculation are often divided into **bonding, non-bonding and anti-bonding orbitals**.
- The shape of the MOs and their respective energies are deduced approximately from comparing both *symmetry and energy* of atomic orbitals of the individual atoms (or molecular fragments).
- This is done by using the symmetry of the molecules and orbitals involved in bonding. The first step in this process is assigning a *point group* to the molecule. Then a *reducible representation* of the bonding is determined.
- The graphs that are plotted to make this discussion clearer are called *correlation diagrams*.

Ligand field theory

- When empirical corrections are added to CFT it is known as Ligand Field Theory (LFT).
- LFT represents an application of molecular orbital (MO) theory to transition metal complexes.
- Need for corrections to CFT arise from metal-ligand orbital overlap, implying some degree of covalent M–L bonding (metal electrons delocalized onto the ligand)
- This delocalization results in lesser energy separation between the excited state energy levels (Russell-Saunders term states) in the complex than predicted for the ion in the crystal field environment.
- The disparity between free-ion and complex-ion electronic state energies is the socalled nephelauxetic effect (cloud-expanding), which depends upon both the metal ion and ligand.
- For a given metal ion, the ability of ligands to induce this cloud expanding increases according to a nephelauxetic series:

 $F^- < H_2O < NH_3 < en < ox < SCN^- < Cl^- < CN^- < Br^- < I^-$

• Note that the ordering of ligands in the nephelauxetic series is not the same as the spectrochemical series.

Character table for the O_h point group

O_h	E	8 <i>C</i> ₃	$6C_2$	$6C_4$	$3C_2 (= C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	6σ _d		1
A_{1g}	1	1	1	1	1	1	1	1	1	1		
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2-x^2-y^2),$
												$x^2 - y^2$)
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_u	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1	1.	
Г	6	0	0	2	2	0	0	0	4	2		$x^2 + y^2 + z^2$
A_{1g}	1	1	1	1	1	1	1	1	1	1		-
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2)$
												$x^2 - y^2$)

 $\Gamma_{\sigma} = A_{1g} + E_g + T_{1u}$

MO description of σ only bonding in an ${\rm O}_{\rm h}$ transition metal complex

- The twelve electrons provided by the ligands alone fill the lowest three levels of MOs (a_{1g}, t_{1u}, and e_g)
- Any electrons provided by the metal ion will result in an equivalent filling of the d orbitals (t_{2g} level and if necessary the e_g* level)
- Electron filling above the six MOs in the lowest three levels is identical to the presumed filling of d orbitals in the CFT model.
- As with the CFT model, both high and low spin ground states are possible for d⁴ through d⁷ metal ion configurations.
- In the MO scheme Δ_0 (10Dq) is defined as the energy separation between the t_{2g} and e_g^* levels.
- The lower t_{2g} orbitals are nonbonding and can be taken as essentially the dxy, dxz, and dyz orbitals of the metal ion, which is not materially different from the CFT view.
- The upper e_g* orbitals are now seen as antibonding molecular orbitals.
- Although antibonding, the e_g* MOs when occupied involve sharing of electron density between the metal ion and the ligands.

Number of d		Wea	k-Field Ar	rangemen	t	_	Coulombic	Exchange	
Electrons	t_{2g}				eg	$LFSE(\Delta_o)$	Energy	Energy	
1	\uparrow					$-\frac{2}{5}$			
2	\uparrow	↑				$-\frac{4}{5}$		Π_e	
3	\uparrow	\uparrow	\uparrow			$-\frac{6}{5}$		$3\Pi_e$	
4	\uparrow	↑	Ŷ	1		$-\frac{3}{5}$		$3\Pi_e$	
5	\uparrow	↑	↑	1	↑	0		$4\Pi_e$	
6	$\uparrow \downarrow$	↑	\uparrow	↑	↑	$-\frac{2}{5}$	Π_c	$4\Pi_e$	
7	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	$-\frac{4}{5}$	$2\Pi_c$	$5\Pi_e$	
8	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	↑	$-\frac{6}{5}$	$3\Pi_c$	$7\Pi_e$	
9	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	↑	$-\frac{3}{5}$	$4\Pi_c$	$7\Pi_e$	
10	$\uparrow \downarrow$	0	$5\Pi_c$	$8\Pi_e$					
Number of d		Stro	ng-Field A	rrangeme	nt		Coulombic	Exchange	Strong Field
Electrons		t_{2g}			eg	LFSE (Δ_o)	Energy	Energy	-Weak Field
1	\uparrow					$-\frac{2}{5}$			0
2	\uparrow	↑				$-\frac{4}{5}$		Π_e	0
3	Ŷ	↑	1			$-\frac{6}{5}$		$3\Pi_e$	0
4	$\uparrow \downarrow$	1	Ŷ			$-\frac{8}{5}$	Π_c	$3\Pi_e$	$-\Delta_o + \Pi_c$
5	$\uparrow \downarrow$	$\uparrow\downarrow$	↑			$-\frac{10}{5}$	$2\Pi_c$	$4\Pi_e$	$-2\Delta_o + 2\Pi_c$
6	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$			$-\frac{12}{5}$	3П _с	$6\Pi_e$	$-2\Delta_o + 2\Pi_c + 2\Pi_e$
7	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	Î		$-\frac{9}{5}$	$3\Pi_c$	$6\Pi_e$	$-\Delta_o + \Pi_c + \Pi_e$
8	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	Î	↑	$-\frac{6}{5}$	3П _с	$7\Pi_e$	0
9	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	Î	$-\frac{3}{5}$	$4\Pi_c$	$7\Pi_e$	0
10	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow \downarrow$	¢↓	$\uparrow \downarrow$	0	$5\Pi_c$	$8\Pi_e$	0

Note: In addition to the LFSE, each pair formed has a positive Coulombic energy, Π_c , and each set of two electrons with the same spin has a negative exchange energy, Π_e . When $\Delta_o > \Pi_c$ for d^4 or d^5 or when $\Delta_o > \Pi_c + \Pi_e$ for d^6 or d^7 , the strong-field arrangement (low spin) is favored.

Total pairing energy $\Pi = \Pi_c + \Pi_e$