Crystal Field Theory

Describes how the d orbitals of the transition metal are affected by the presence of coordinating ligands.

- Imagine the metal ion surrounded by a uniform spherical electric field where the d orbitals are degenerate.
- As the ligands approach the metal from the six octahedral directions $\pm x, \pm y$, and $\pm z$, the degeneracy is broken
- The $d x^{2}-y^{2}$ and $d z^{2}$ orbitals point toward the L groups are destabilized by the negative charge of the ligands and move to higher energy.
- Those that point away from L ($d x y, d y z$, and dxz) are less destabilized.

Octahedral

- The crystal field splitting energy (Δ - sometimes labeled 10 Dq) depends on the value of the effective negative charge and therefore on the nature of the ligands.
- Higher Δ leads to stronger $\mathrm{M}-\mathrm{L}$ bonds.

High spin vs. low spin electron configuration

- If Δ is low enough, electrons may arrange in a "high spin" configuration reducing electron- electron repulsion that occurs upon pairing up in the same orbital.
- In 1st row metals complexes, low-field ligands (strong π - donors) favor high spin configurations whereas high field ligands (π-acceptors/ strong σ donors) favor low spin.
- The majority of 2 nd and 3rd row metal complexes are low-spin irrespective of their ligands.

strong π donor L

$$
\text { strong } \sigma \text { donor } \mathrm{L} /
$$ π-acceptor L

- Low-oxidation state complexes also tend to have lower Δ than high-oxidation state complexes.
- High oxidation state \rightarrow increased $\chi \rightarrow$ increased $\Delta \rightarrow$ low-spin configuration

$$
\mathbf{M n}^{2+}<\mathrm{V}^{2+}<\mathbf{C o}^{2+}<\mathbf{F e}^{2+}<\mathbf{N i}^{\mathbf{2 +}}<\mathbf{F e}^{3+}<\mathbf{C o}^{\mathbf{3 +}}<\mathbf{M n}^{\mathbf{4 +}}<\mathbf{R h}^{3+}<\mathbf{I r}^{3+}<\mathbf{P t}^{4+}
$$

$\longleftarrow 1$ st row/low-valent low Δ

2nd,3rd row/high-valent high Δ

Construction of MO diagrams for Transition Metal Complexes

σ bonding only scenario

General MO Approach for MX ${ }_{n}$ Molecules

- To construct delocalized MOs we define a linear combination of atomic orbitals (LCAOs) that combine central-atom AOs with combinations of pendant ligand orbitals called SALCs:

$$
\begin{gathered}
\Psi_{\mathrm{MO}}=a \Psi(\text { Metal AO }) \pm b \Psi(\text { SALC } n \mathrm{X}) \\
\text { (SALC }=\text { Symmetry Adapted Linear Combination) }
\end{gathered}
$$

- SALCs are constructed with the aid of group theory, and those SALCs that belong to a particular species of the group are matched with central-atom AOs with the same symmetry to make bonding and antibonding MOs.

$$
\Psi_{\text {SALC }}=c_{1} \Psi_{1} \pm c_{2} \Psi_{2} \pm c_{3} \Psi_{3} \ldots \pm c_{n} \Psi_{n}
$$

1. Use the directional properties of potentially bonding orbitals on the outer atoms (shown as vectors on a model) as a basis for a representation of the SALCs in the point group of the molecule.

point group $=O_{h}$
2. Generate a reducible representation for all possible SALCs by noting whether vectors are shifted or non-shifted by each class of operations of the group.
$>$ Each vector shifted through space contributes 0 to the character for the class.

Each non-shifted vector contributes 1 to the character for the class.

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2

point group $=O_{h}$
3. Decompose the reducible representation into its component irreducible representations to determine the symmetry species of the SALCs.

- For complex molecules with a large dimension reducible representation, identification of the component irreducible representations and their quantitative contributions can be carried out systematically using the following equation

$$
n_{i}=\frac{1}{h} \sum_{c} g_{c} \chi_{i} \chi_{r}
$$

n_{i} : number of times the irreducible representation i occurs in the reducible representation
h : order of the group
c : class of operations
g_{c} : number of operations in the class
$\chi_{i}: \quad$ character of the irreducible representation for the operations of the class
$\chi_{r}: \quad$ character of the reducible representation for the operations of the class

- The work of carrying out a systematic reduction is better organized by using the tabular method, rather than writing out the individual equations for each irreducible representation

Character Table for $\boldsymbol{O}_{\mathrm{h}}$

point group $=O_{h}$

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$	$h=48$	
$A_{1 \mathrm{~g}}$	1	1	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$A_{2 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	1	1	-1		
E_{g}	2	-1	0	0	2	2	0	-1	2	0		$\left(2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}\right)$
$T_{1 \mathrm{~g}}$	3	0	-1	1	-1	3	1	0	-1	-1	$\left(R_{\mathrm{x}}, R_{\mathrm{y}}, R_{\mathrm{z}}\right)$	$(\mathrm{xz}, \mathrm{yz}, \mathrm{xy})$
$T_{2 \mathrm{~g}}$	3	0	1	-1	-1	3	-1	0	-1	1		
$A_{1 \mathrm{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$A_{2 \mathrm{u}}$	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		$(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$T_{1 \mathrm{u}}$	3	0	-1	1	-1	-3	-1	0	1	1		
$T_{2 \mathrm{u}}$	3	0	1	-1	-1	-3	1	0	1	-1		

Transformation Properties of Central AOs

- Transformation properties for the standard AOs in any point group can be deduced from listings of vector transformations in the character table for the group.
s - transforms as the totally symmetric representation in any group.
\boldsymbol{p} - transform as x, y, and z , as listed in the second-to-last column of the character table.
\boldsymbol{d} - transform as $\mathrm{xy}, \mathrm{xz}, \mathrm{yz}, \mathrm{x}^{2}-\mathrm{y}^{2}$, and z^{2} (or $2 z^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}$)
e.g., in T_{d} and O_{h}, as listed in the last column of the character table.

Mulliken Symbols - Irreducible Representation Symbols

- In non-linear groups:

A	$:$	non-degenerate;	symmetric to C_{n} where $\chi\left(C_{n}\right)>0$.
B	$:$	non-degenerate;	anti-symmetric to C_{n} where $\chi\left(C_{n}\right)<0$.
E	$:$	doubly-degenerate;	$\chi(E)=2$.
T	$:$	triply-degenerate; $\quad \chi(T)=3$.	
G	$:$	four-fold degeneracy; $\chi(G)=4$, observed in I and I_{h}	
H	$:$	five-fold degeneracy; $\chi(H)=5$, observed in I and I_{h}	

- In linear groups $C_{\infty v}$ and $D_{\infty h}$:
$\Sigma \equiv A \quad$ non-degenerate; \quad symmetric to $C_{\infty} ; \chi\left(C_{\infty}\right)=1$.
$\Pi, \Delta, \Phi \equiv E \quad$ doubly-degenerate; $\quad \chi(E)=2$.

Mulliken Symbols - Modifying Symbols

- With any degeneracy in any centrosymmetric groups:
subscript $\boldsymbol{g} \quad: \quad$ gerade ; symmetric with respect to inversion ; $\chi_{i}>0$.
subscript $u \quad: \quad$ ungerade ; anti-symmetric with respect to inversion ; $\chi_{i}<0$.
- With any degeneracy in non-centrosymmetric non-linear groups:
prime (') : symmetric with respect to $\sigma_{h} ; \chi\left(\sigma_{h}\right)>0$.
double prime ("): anti-symmetric with respect to $\sigma_{h} ; \chi\left(\sigma_{h}\right)<0$.
- With non-degenerate representations in non-linear groups:
subscript 1 : symmetric with respect to $C_{m}(m<n)$ or σ_{v};
$\chi\left(C_{m}\right)>0$ or $\chi\left(\sigma_{v}\right)>0$.
subscript 2 : anti-symmetric with respect to $C_{m}(m<n)$ or σ_{v};

$$
\chi\left(C_{m}\right)<0 \text { or } \chi\left(\sigma_{v}\right)<0
$$

- With non-degenerate representations in linear groups $\left(C_{\infty_{v}}\right.$ and $\left.D_{\infty_{h}}\right)$:
subscript $+\quad: \quad$ symmetric with respect to ∞C_{2} or $\infty \sigma_{v}$;

$$
\chi\left(\infty C_{2}\right)=1 \text { or } \chi\left(\infty \sigma_{h}\right)=1 .
$$

subscript - : anti-symmetric with respect to $\infty \mathrm{C}_{2}$ or $\infty \sigma_{v}$;

$$
\chi\left(\infty C_{2}\right)=-1 \text { or } \chi\left(\infty \sigma_{h}\right)=-1 .
$$

Systematic Reduction for O_{h}

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$	Σ	$n_{\mathrm{i}}=\Sigma / h$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2		$(h=48)$
$A_{1 \mathrm{~g}}$												
$A_{2 \mathrm{~g}}$												
E_{g}												
$T_{1 \mathrm{~g}}$												
$T_{2 \mathrm{~g}}$												
$A_{1 \mathrm{u}}$												
$A_{2 \mathrm{u}}$												
E_{u}												
$T_{1 \mathrm{u}}$												
$T_{2 \mathrm{u}}$												

Systematic Reduction for O_{h}

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$	Σ	$n_{\mathrm{i}}=\Sigma / h$
Γ_{σ}	6	0	0	2	2	0	0	0	4	2		$(h=48)$
$A_{1 \mathrm{~g}}$	6	0	0	12	6	0	0	0	12	12	48	1
$A_{2 \mathrm{~g}}$	6	0	0	-12	6	0	0	0	12	-12	0	0
E_{g}	12	0	0	0	12	0	0	0	24	0	48	1
$T_{1 \mathrm{~g}}$	18	0	0	12	-6	0	0	0	-12	-12	0	0
$T_{2 \mathrm{~g}}$	18	0	0	-12	-6	0	0	0	-12	12	0	0
$A_{1 \mathrm{u}}$	6	0	0	12	6	0	0	0	-12	-12	0	0
$A_{2 \mathrm{u}}$	6	0	0	-12	6	0	0	0	-12	12	0	0
E_{u}	12	0	0	0	12	0	0	0	-24	0	0	0
$T_{1 \mathrm{u}}$	18	0	0	12	-6	0	0	0	12	12	48	1
$T_{2 \mathrm{u}}$	18	0	0	-12	-6	0	0	0	12	-12	0	0

4. The number of SALCs, including members of degenerate sets, must equal the number of ligand orbitals taken as the basis for the representation.

point group $=O_{h}$

$$
\begin{aligned}
& \Gamma_{\sigma}=A_{1 \mathrm{~g}}+E_{\mathrm{g}}+T_{1 \mathrm{u}} \\
& d_{\Gamma}=1+2+3=6
\end{aligned}
$$

5. Determine the symmetries of potentially bonding central-atom AOs by inspecting unit vector and direct product transformations listed in the character table of the group.

$$
\Gamma_{\sigma}=A_{1 \mathrm{~g}}+E_{\mathrm{g}}+T_{1 \mathrm{u}}
$$

Cr bonding AOs

$$
\begin{aligned}
& A_{1 \mathrm{~g}}: 4 s \\
& T_{1 \mathrm{u}}:\left(4 p_{\mathrm{x}}, 4 p_{\mathrm{y}}, 4 p_{\mathrm{z}}\right) \\
& E_{\mathrm{g}}:\left(3 d \mathrm{x}^{2}-\mathrm{y}^{2}, 3 d z^{2}\right)
\end{aligned}
$$

Cr non-bonding AOs
$T_{2 g}:(3 d x y, 3 d x z, 3 d y z)$
define Cartesian axis

Symmetry
6. Central-atom AOs and pendant-atom SALCs with the same symmetry species will form both bonding and antibonding LCAO-MOs.

Symmetry

anti-bonding MOs

7. Central-atom AOs or pendant-atom SALCs with unique symmetry (no species match between AOs and SALCs) form nonbonding MOs.

$$
-\infty p_{p_{x}}-p_{p_{y}}^{\infty} \frac{d}{p_{p_{z}}}
$$

$$
6 \mathrm{CO}
$$

$\sum_{d z^{2}}^{\infty}=-\infty$
$\underset{d x y}{+\infty} \underset{d x z}{+b^{2}}$

Construction of MO diagrams for Transition Metal Complexes

π bonding complexes

Example: Constructing a MO for Chromium Hexacarbonyl, $\mathrm{Cr}(\mathrm{CO})_{6}$

point group $=O_{h}$

- Each vector shifted through space contributes 0 to the character for the class.
- Each non-shifted vector contributes 1 to the character for the class.
- Each vector shifted to the negative of itself (180 ${ }^{\circ}$ contributes -1 to the character for the class.

Example: Constructing a MO for Chromium Hexacarbonyl, $\mathrm{Cr}(\mathrm{CO})_{6}$

Example: Constructing a MO for Chromium Hexacarbonyl, $\mathrm{Cr}(\mathrm{CO})_{6}$

$$
\Gamma_{\sigma}=A_{1 \mathrm{~g}}+E_{\mathrm{g}}+T_{1 \mathrm{u}}
$$

$$
\text { point group }=O_{h}
$$

point group $=O_{h}$

$$
\Gamma_{\pi}=T_{1 \mathrm{~g}}+T_{2 \mathrm{~g}}+T_{1 \mathrm{u}}+T_{2 \mathrm{u}}
$$

Example: Constructing a MO for Chromium Hexacarbonyl, $\mathrm{Cr}(\mathrm{CO})_{6}$

$$
\begin{aligned}
& \Gamma_{\sigma}=A_{1 \mathrm{~g}}+E_{\mathrm{g}}+T_{1 \mathrm{u}} \\
& \Gamma_{\pi}=T_{1 \mathrm{~g}}+T_{2 \mathrm{~g}}+T_{1 \mathrm{u}}+T_{2 \mathrm{u}} \\
& \mathrm{Cr} \sigma \text {-bonding AOs } \\
& A_{1 g}: 4 s \\
& T_{1 u}:\left(4 p_{x}, 4 p_{y}, 4 p_{z}\right) \\
& E_{\mathrm{g}}:\left(3 d x^{2}-y^{2}, 3 d z^{2}\right) \\
& \text { Cr non-bonding AOs } \\
& T_{2 \mathrm{~g}}:(3 d x y, 3 d x z, 3 d y z) \\
& \Gamma_{\pi}=T_{1 \mathrm{~g}}+T_{2 \mathrm{~g}}+T_{1 \mathrm{u}}+T_{2 \mathrm{u}} \\
& \mathrm{Cr} \pi \text {-bonding AOs } \\
& T_{2 g}:(3 d x y, 3 d x z, 3 d y z) \\
& T_{1 u}:\left(4 p_{x}, 4 p_{y}, 4 p_{z}\right) \\
& \text { - } T_{2 g} \text { previously considered non- } \\
& \text { bonding in } \sigma \text {-bonding scheme } \\
& \text { - } T_{1 u} \text { combines with } T_{1 u} \text { SALC in } \\
& \text { in } \sigma \text {-bonding scheme } \\
& \text { - } T_{1 \mathrm{~g}}, T_{2 \mathrm{u}} \pi \text {-SALCs are non- } \\
& \text { bonding }
\end{aligned}
$$

> Symmetry
> $r_{n}\{ \}^{2}$

- $T_{1 u}$ AOs overlap more effectively with $T_{1 u} \sigma$-SALC thus the π-bonding interaction is considered negligible or at most only weakly-bonding.

$d x y$

$d y z$

Dewar-Chatt-Duncanson model

Metal $\mathrm{dz}^{2} \stackrel{\sigma \text { bond }}{\square}$ carbonyl

Metal $d x^{2}-\mathrm{dy}^{2} \stackrel{\sigma \text { bond }}{\sim}$ carbonyl

Metal dyz $\stackrel{\pi \text {-back-donation }}{ }$ carbonyl

	$v\left(\mathrm{CO} \mathrm{cm}^{-1}\right.$
$\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$	1748
$\left[\mathrm{~V}(\mathrm{CO})_{6}\right]^{-}$	1859
$\mathrm{Cr}(\mathrm{CO})_{6}$	2000
$\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$	2100
$\left[\mathrm{Fe}(\mathrm{CO})_{6}\right]^{2+}$	2204

Summary of π-bonding in \mathbf{O}_{h} complexes

