
Crystal Field Theory
Describes how the d orbitals of the transition metal are affected

by the presence of coordinating ligands.

• Imagine the metal ion surrounded by a

uniform spherical electric field where the d

orbitals are degenerate.

• As the ligands approach the metal from the

six octahedral directions ±x, ±y, and ±z, the

degeneracy is broken

• The dx2−y2 and dz2 orbitals point toward

the L groups are destabilized by the

negative charge of the ligands and move to

higher energy.

• Those that point away from L (dxy, dyz, and

dxz) are less destabilized.

• The crystal field splitting energy (∆∆∆∆ - sometimes labeled 10Dq) depends on the value

of the effective negative charge and therefore on the nature of the ligands.

• Higher ∆∆∆∆ leads to stronger M−L bonds.



• If Δ is low enough, electrons may arrange in a "high spin" configuration reducing 

electron- electron repulsion that occurs upon pairing up in the same orbital.

• In 1st row metals complexes, low-field ligands (strong π - donors) favor high spin 

configurations whereas high field ligands (π-acceptors/ strong σ donors) favor low 

spin.

• The majority of 2nd and 3rd row metal complexes are low-spin irrespective of 

their ligands.

High spin vs. low spin electron configuration



• Low-oxidation state complexes also tend to have lower Δ than high-oxidation 

state complexes.

• High oxidation state→ increased χχχχ →increased Δ → low-spin configuration



Construction of MO diagrams for Transition Metal 

Complexes

σσσσ bonding only scenarioσσσσ bonding only scenario



General MO Approach for MXn Molecules

• To construct delocalized MOs we define a linear combination of atomic orbitals

(LCAOs) that combine central-atom AOs with combinations of pendant ligand

orbitals called SALCs:

ΨMO = a Ψ (Metal AO) ± b Ψ (SALC nX)

(SALC = Symmetry Adapted Linear Combination)

• SALCs are constructed with the aid of group theory, and those SALCs that belong

to a particular species of the group are matched with central-atom AOs with the

same symmetry to make bonding and antibonding MOs.

ΨSALC = c1 Ψ1 ± c2 Ψ2 ± c3 Ψ3 …. ± cn Ψn



1. Use the directional properties of potentially bonding orbitals on the outer atoms

(shown as vectors on a model) as a basis for a representation of the SALCs in the

point group of the molecule.
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2. Generate a reducible representation for all possible SALCs by noting whether vectors

are shifted or non-shifted by each class of operations of the group.

� Each vector shifted through space contributes 0 to the character for the class.

Each non-shifted vector contributes 1 to the character for the class.



3. Decompose the reducible representation into its component irreducible

representations to determine the symmetry species of the SALCs.

• For complex molecules with a large dimension reducible representation, identification of the

component irreducible representations and their quantitative contributions can be carried out

systematically using the following equation

ni : number of times the irreducible representation i occurs in the reducible representation

h : order of the group

c : class of operations

gc : number of operations in the class

χi : character of the irreducible representation for the operations of the class

χr : character of the reducible representation for the operations of the class

• The work of carrying out a systematic reduction is better organized by using the tabular

method, rather than writing out the individual equations for each irreducible representation



Character Table for Oh



Transformation Properties of Central AOs

• Transformation properties for the standard AOs in any point group can be deduced

from listings of vector transformations in the character table for the group.

s – transforms as the totally symmetric representation in any group.

p – transform as x, y, and z, as listed in the second-to-last column of the characterp – transform as x, y, and z, as listed in the second-to-last column of the character

table.

d – transform as xy, xz, yz, x2-y2 , and z2 (or 2z2-x2-y2 )

e.g., in Td and Oh , as listed in the last column of the character table.



• In non-linear groups:

A : non-degenerate; symmetric to Cn where χ(Cn) > 0.

B : non-degenerate; anti-symmetric to Cn where χ(Cn) < 0.

E : doubly-degenerate; χ(E) = 2.

T : triply-degenerate; χ(T) = 3.

G : four-fold degeneracy; χ(G) = 4, observed in I and Ih

H : five-fold degeneracy; χ(H) = 5, observed in I and I

Mulliken Symbols

- Irreducible Representation Symbols

H : five-fold degeneracy; χ(H) = 5, observed in I and Ih

• In linear groups C∞v and D∞h :

Σ ≡ A non-degenerate; symmetric to C∞ ; χ(C∞) = 1.

Π , ∆, Φ ≡ E doubly-degenerate; χ(E) = 2.



• With any degeneracy in any centrosymmetric groups:

subscript g : gerade ; symmetric with respect to inversion ; χi > 0.

subscript u : ungerade ; anti-symmetric with respect to inversion ; χi < 0.

• With any degeneracy in non-centrosymmetric non-linear groups:

prime (‘) : symmetric with respect to σh ; χ(σh) > 0.

double prime (‘’) : anti-symmetric with respect to σh ; χ(σh) < 0.

• With non-degenerate representations in non-linear groups:

Mulliken Symbols - Modifying Symbols

subscript 1 : symmetric with respect to Cm (m < n) or σv ;

χ(Cm) > 0 or χ(σv) > 0.

subscript 2 : anti-symmetric with respect to Cm (m < n) or σv ;

χ(Cm) < 0 or χ(σv) < 0.

• With non-degenerate representations in linear groups (C∞v and D∞h ):

subscript + : symmetric with respect to ∞C2 or ∞σv ;

χ(∞C2) = 1 or χ(∞σh) = 1.

subscript −−−− : anti-symmetric with respect to ∞C2 or ∞σv ;

χ(∞C2) = -1 or χ(∞σh) = -1.



Systematic Reduction for Oh

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3 h 6 d ni = /h

6 0 0 2 2 0 0 0 4 2
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Systematic Reduction for Oh



4. The number of SALCs, including members of degenerate sets, must equal the number

of ligand orbitals taken as the basis for the representation.

point group = Oh



5. Determine the symmetries of potentially bonding central-atom AOs by inspecting unit

vector and direct product transformations listed in the character table of the group.

Cr non-bonding AOs

T2g : (3dxy, 3dxz, 3dyz)

Cr bonding AOs

A1g :  4s

T1u :  (4px , 4py , 4pz)

Eg :  (3dx2-y2 , 3dz2 )





6. Central-atom AOs and pendant-atom SALCs with the same symmetry species will form

both bonding and antibonding LCAO-MOs.

Eg

Symmetry bonding MOs anti-bonding MOs

A1g

T1u



7. Central-atom AOs or pendant-atom SALCs with unique symmetry (no species match

between AOs and SALCs) form nonbonding MOs.
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Construction of MO diagrams for Transition Metal 

Complexes

ππππ bonding complexesππππ bonding complexes



Example: Constructing a MO for

Chromium Hexacarbonyl, Cr(CO)6

• Each vector shifted through space contributes 0 to the character for the class.

• Each non-shifted vector contributes 1 to the character for the class.

• Each vector shifted to the negative of itself (180°°°°) contributes -1 to the character for

the class.



Example: Constructing a MO for

Chromium Hexacarbonyl, Cr(CO)6

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3 h 6 d /h

12 0 0 0 -4 0 0 0 0 0

A1g 12 0 0 0 -12 0 0 0 0 0 0 0

A2g 12 0 0 0 -12 0 0 0 0 0 0 0

E 24 0 0 0 24 0 0 0 0 0 0 0

h = 48

Eg 24 0 0 0 -24 0 0 0 0 0 0 0

T1g 36 0 0 0 12 0 0 0 0 0 48 1

T2g 36 0 0 0 12 0 0 0 0 0 48 1

A1u 12 0 0 0 -12 0 0 0 0 0 0 0

A2u 12 0 0 0 -12 0 0 0 0 0 0 0

Eu 24 0 0 0 -24 0 0 0 0 0 0 0

T1u 36 0 0 0 12 0 0 0 12 0 48 1

T2u 36 0 0 0 12 0 0 0 12 0 48 1



Example: Constructing a MO for

Chromium Hexacarbonyl, Cr(CO)6



Example: Constructing a MO for

Chromium Hexacarbonyl, Cr(CO)6

Cr ππππ-bonding AOs

T2g : (3dxy, 3dxz, 3dyz)

T1u : (4px , 4py , 4pz)

Cr σσσσ-bonding AOs

A1g :  4s

T1u :  (4px , 4py , 4pz)

• T2g previously considered non-

bonding in σ-bonding scheme

• T1u combines with T1u SALC in

in σ-bonding scheme

• T1g , T2u π-SALCs are non-

bonding

Cr non-bonding AOs

T2g : (3dxy, 3dxz, 3dyz)

T1u :  (4px , 4py , 4pz)

Eg :  (3dx2-y2 , 3dz2 )





• T1u AOs overlap more effectively with T1u σ-SALC thus the π-bonding interaction is

considered negligible or at most only weakly-bonding.
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Dewar-Chatt-Duncanson model

v(CO)  cm-1

[Ti(CO)6]2- 1748

[V(CO)6]- 1859 

Cr(CO)6 2000

[Mn(CO)6 ]
+ 2100

[Fe(CO)6 ]
2+ 2204



Summary of ππππ-bonding in Oh complexes

ππππ donor ligands result in L→M ππππ

bonding, a smaller ∆∆∆∆o favoring high spin

configurations and a decreased stability.

ππππ acceptor ligands result in M→L ππππ bonding, a larger ∆∆∆∆o

favoring low spin configurations with an increased

stability.


