Application of Hydrogen Peroxide

Zijuan Zhang

Outline

- Introduction of Hydrogen Peroxide (H₂O₂) Physical Properties Chemical Properties Decomposition
- Synthesis of H₂O₂
- Application of H₂O₂ In Chemical Synthesis In Industry

Physical Properties

Molecular formula Molar mass Appearance

Density Melting point Boiling point Solubility in water Acidity (p*K*a) Viscosity Dipole moment

 H_2O_2 34.0147 g·mol⁻¹ Very pale blue color; colorless in solution 1.4 g·cm⁻³, liquid -11 °C (262.15 K) 150.2 °C (423.35 K) Miscible 11.65 1.245 cP at 20 °C 2.26 D

http://en.wikipedia.org/wiki/Hydrogen_peroxide

Chemical Properties

Reaction Types:

Decomposition: $2H_2O_2 \longrightarrow 2H_2O_+ O_2$ Oxidation: $H_2O_2 + M \longrightarrow MO_+ H_2O$ Addition: $H_2O_2 + A \longrightarrow AH_2O_2$ Reduction: $H_2O_2 + R \longrightarrow RH_2 + O_2$ Substitution: $H_2O_2 + RX \longrightarrow ROOH + HX$

Atom Economy and Byproduct

Oxidant	Active Oxygen(% w/w)	By-Product
0 ₂	100	H ₂ O
H ₂ O ₂	47	H ₂ O
N ₂ O	36.4	N ₂
NaClO ₂	35.6	NaCl
O ₃	33.3	0 ₂
NalO ₄	29.9	Nal
HNO ₃	25.0	NO _x
NaClO	21.6	NaCl
t-BuOOH	17.8	t-BuOH
NaBrO	10.5	NaBr
KHSO ₅	10.5	KHSO ₄
PhIO4	7.3	PhI

J.L.G.Fierro Angew. Chem. Int. Ed. 2006, 45, 6962

Decomposition of H_2O_2

Commercial grades of hydrogen peroxide are quite stable, typically losing less than 1% relative strength per year.

The primary factors contributing to H_2O_2 decomposition include:

- 1. temperature (2.2 factor increase for each 10 deg-C);
- 2. pH (neutral is best, pH ~ 6-8);
- 3. contamination (especially transition metals such as copper, nickel, zinc or iron);
- 4. exposure to ultraviolet light.

In most cases, pH and contamination work in tandem as the dominant factors.

Sodium pyrophosphate and sodium stannate are often used as stabilizer.

Container's Material

Recommended materials

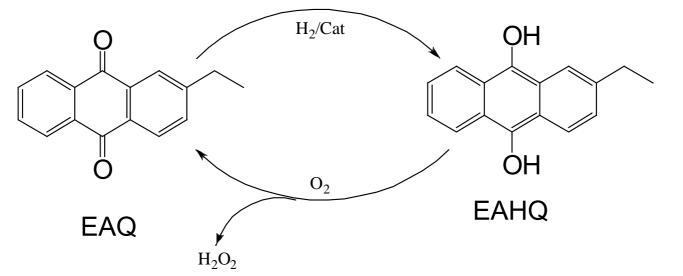
- Aluminum
- 99.5% minimum purity alloys with the following Aluminum Association designations: 1060, 1260, 5254, 5652 or 6063
- Stainless steel types 304, 304L, 316, 316L
- Other acceptable materials
 - Chemical glass
 - Chemical ceramic

```
Polytetrafluoroethylene (PTFE; Teflon<sup>®1</sup>)
```

Polyethylene* (high density, cross-linked, unpigmented and UV stabilized)

```
Viton<sup>®1</sup>, KelF<sup>®2</sup>, Tygon<sup>®3</sup>
```

```
PVC* (temporary systems only)
```


- * For 50% or lower concentration of H₂O₂
- [®] Registered trademarks of DuPont¹, 3M², and U.S. Stoneware⁵

Synthesis of H₂O₂

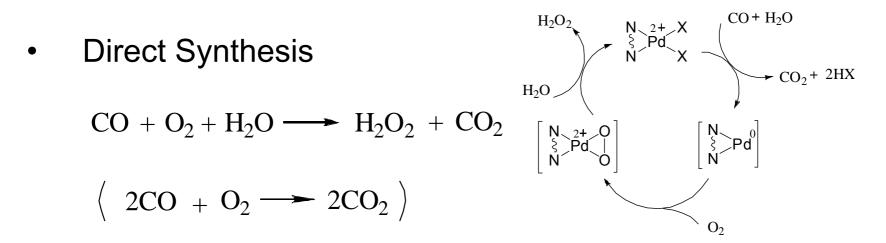
 First obtained in 1818 by Thenard (barium peroxide + nitric acid)
 BaO₂ + 2HNO₃ → H₂O₂ + Ba(NO₃)₂

• Alkylanthraquinone autooxidation (AO) process

Synthesis of H₂O₂

Oxidation of Alcohols

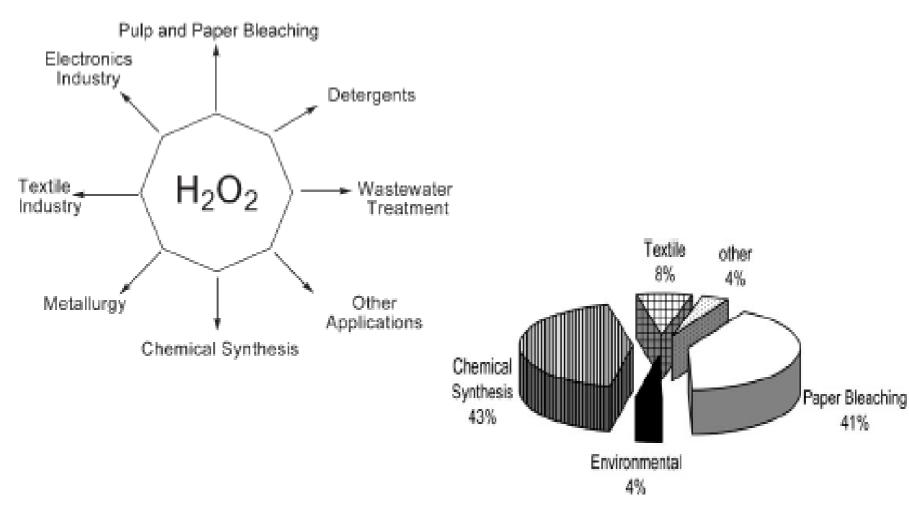
$$\begin{array}{c} \mathsf{OH} \\ + & \mathsf{O}_2 \end{array} \longrightarrow \qquad \mathsf{H}_2\mathsf{O}_2 + \underbrace{\mathsf{O}}_{} \\ \end{array}$$


Shell Chemical, from 1957 to 1980

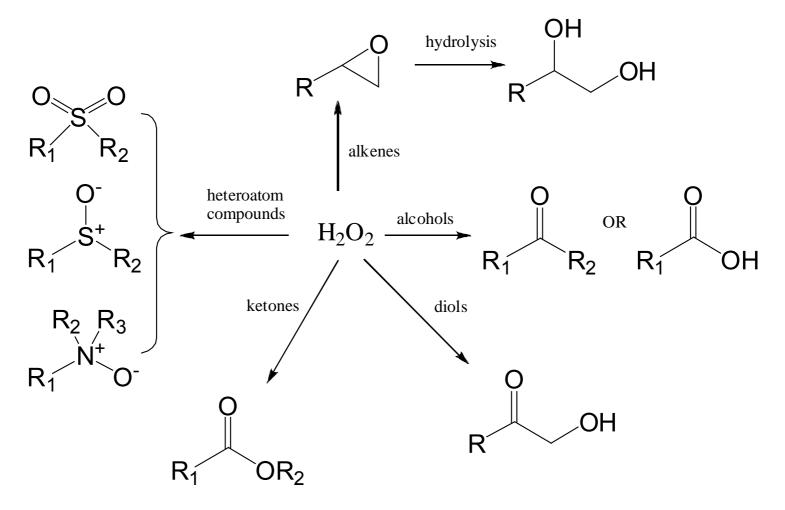
Electrochemical Synthesis

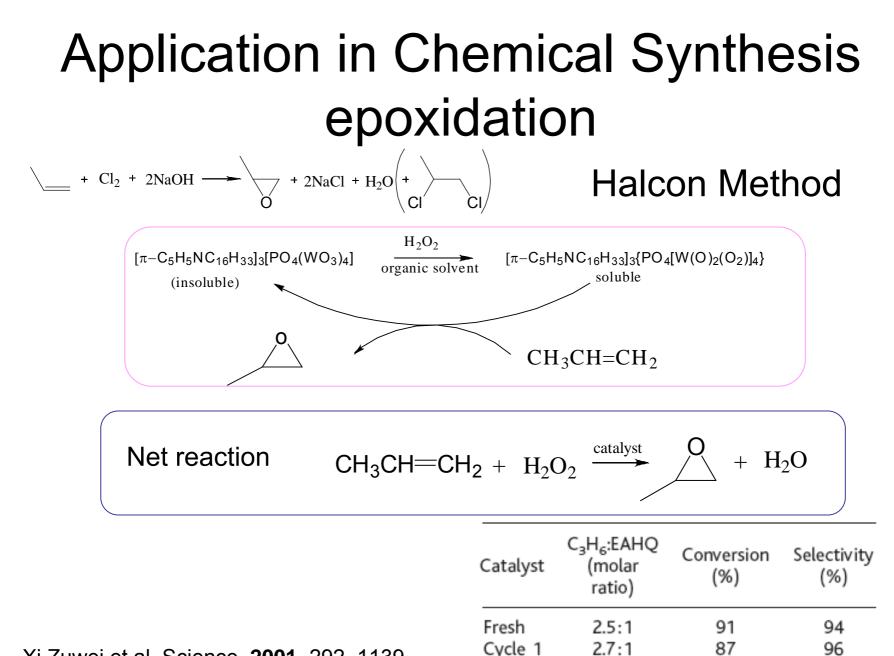
Anode:	$2OH^{-} \longrightarrow H_2O + \frac{1}{2}O_2 + 2e$
Cathode:	$H_2O + O_2 + 2e \longrightarrow HO_2^- + OH^-$
Overall reaction:	$NaOH + \frac{1}{2}O_2 \longrightarrow HO_2Na$

Dow, on-line bleaching


Synthesis of H₂O₂

Other method: Headwaters Technology Innovation
 <u>2007 Greener Reaction Conditions Award</u>


Process for Direct Catalytic Hydrogen Peroxide Production Mike Rueter, Bing Zhou, and Sukesh Parasher, US Patent 7,144,565 B2 (2006)


Application of H₂O₂

J.L.G.Fierro Angew. Chem. Int. Ed. **2006**, 45, 6962

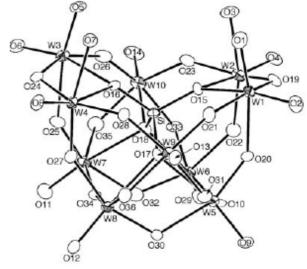
Application in Chemical Synthesis

Cycle 2

2.4:1

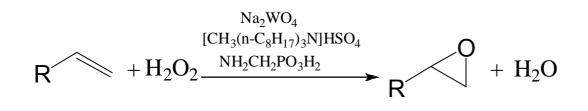
92

90


Xi Zuwei et al. Science, 2001, 292, 1139

Application in Chemical Synthesis epoxidation

	= + H ₂	02	305	бК	
Entry	Substrate	Time (h)	Yield (%)	Product [selectivity (%)]	H ₂ O ₂ efficiency (%
1*	\sim	8	90	O (>99)	>99
2*	~/	8	88	(99)	>99
3*	10	9	91	(99)	99
4	$\sim\sim\sim$	10	90	(99)	>99
5	$\sim \sim \sim$	3	>99	(>99)	>99
6	$\sim\sim\sim$	14	91	O (99)	99
7	\bigcirc	6	84	(> 99)	>99
8	\bigcirc	4	95	(>99)	99
9	A	4	>99	(99)	>99
10	\bigcirc	2	99	(>99)	>99
11†	\square	4	97	(>99)	>99


Kamata, K. et al Science, 2003, 300, 964

olefin (5 mmol), $(Bu_4N)_4 \cdot 1^*$ (8 µmol), 20 30% aqueous H₂O₂ (1 mmol), and MeCN(6 ml), @305 K.

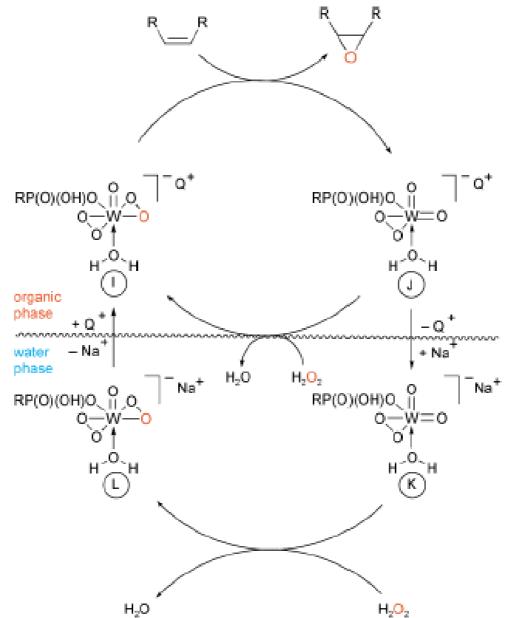
- 0.16 mol% catalyst
- >99% selectivity
- >99% H₂O₂ efficiency
- Broad substrate scope
- Recovered and recycled up to 5 times (no loss of activity) ¹⁴

Application in Chemical Synthesis epoxidation

- High Yield
- Solvent-Free
- Environmental consciousness
- Halide-Free

Epoxy resin encapsulants for semiconductors are required to be entirely free from chlorides.

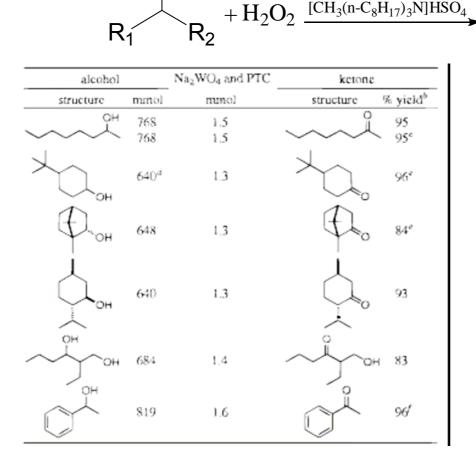
Ryoji Noyori

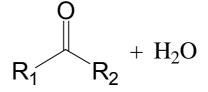

Application in Chemical Synthesis epoxidation

entry	olefin	mmol	Na ₂ WO ₄ , mmol	toluene, mL	time, h	convn, ^b %	yield, ^{b,c} %
1	1-octene	20	0.4	4	4	96	94
2		20	0.4	0	2	89	86
3		100	2	30	4		86^d
4	1-decene	20	0.4	4	4	99	99
5		20	0.4	0	2	94	93
6		100	2	30	4		91^d
7	1-dodecene	20	0.4	4	4	98	97
8		20	0.4	0	2	87	87
9		100	2	30	4		92d
10		594	12	0	2		87 ^d

Reaction was run using **30%** H_2O_2 , olefin, $Na_2WO_4 \cdot 2H_2O$, $NH_2CH_2PO_3H_2$, and $[CH_3(n-C_8H_{17})_3N]HSO_4$ in a 150:100:2:1:1 molar ratio at 90 °C with stirring at 1000 rpm. ^{*b*} Determined by GC analysis. ^{*c*} Based on olefin charged. ^{*d*} Isolated by distillation.

Sato, K. et al J. Org. Chem. 1996, 61, 8310

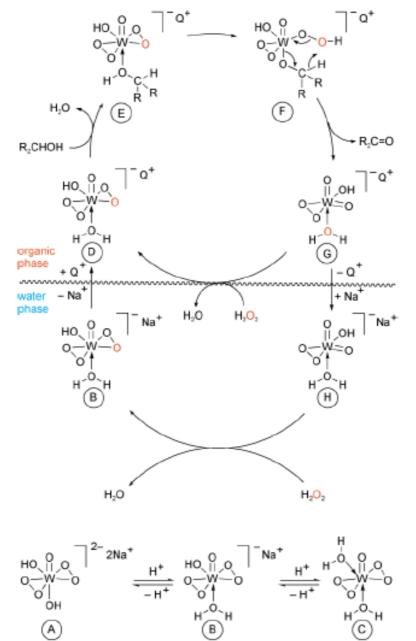

Catalytic Cycle of epoxidation


17

Application in Chemical Synthesis to react with alcohols

 Na_2WO_4

OH


Unless otherwise stated, reaction was run using alcohol and **30%** H_2O_2 in a 1:1.1 molar ratio with stirring at 1000 rpm at 90 °C for 4 h.

PTC : $[CH_3(n-C_8H_{17})_3N]HSO_4$.

- ^b Isolated by distillation.
- ^c Reaction with **3%** H₂O₂.
- ^{*d*} A 1:1 mixture of the cis and trans isomer.
- ^e Toluene(100 mL) was used as solvent.
- ^{*f*} Reaction for 1 h.

Sato, K. et al J. Am. Chem. Soc. 1997, 119, 12386

Catalytic Cycle of alcohol oxidation

19

Application in Chemical Synthesis to react with alcohols

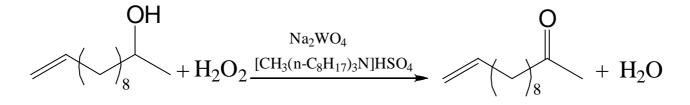
 $\mathsf{R} \quad \mathsf{OH} \ + H_2 O_2 \underbrace{ [CH_3(n-C_8H_{17})_3N] HSO_4}_{\mathsf{ICH}_3(n-C_8H_{17})_3N] HSO_4}$

alcohol		Na_2WO_4 and PTC	product		
structure	structure mmol		structure	% yield*	
л-С ₇ Н ₁₅ ОН	768	15	л-С ₇ Н ₁₅ ОН	87	
ОН	768	15	~он	68	
Арн	1130	23	Асн	52	
О	925	19	ОН	87 ^e	
Он	925	19	$\tilde{\Box}^{\circ}$	86^d	

Sato, K. et al J. Am. Chem. Soc. **1997**, 119, 12386

$$R$$
 OH + H₂O

Unless otherwise stated, reaction was run using alcohol and **30%** H_2O_2 in a **1:1.25** molar ratio with stirring at 1000 rpm at 90 °C for 4 h.


PTC : $[CH_3(n-C_8H_{17})_3N]HSO_4$.

^b Isolated by distillation.

^c Isolated by recrystallization

^{*d*} Reaction using alcohol and $30\% H_2O_2$ in a **1:1** molar ratio. Benzoic acid was produced in <3% yield.

Application in Chemical Synthesis to react with alcohols

alcohol:**30%** H_2O_2 :W:PTC =500:750:1:1 (no solvent, 90 °C, 3 h, 1000 rpm) selectively afforded 11-dodecen-2-one (97% yield)

Chemoselectivity of alcohol/olefin

Sato, K. et al J. Am. Chem. Soc. 1997, 119, 12386

Application in Chemical Synthesis to react with benzylic alcohols

Table 2. Oxidation of benzylic alcohols to benzoic acids^a

XC ₆ H₄CH ₂ OH		H ₂ O ₂ ,	Na ₂ WO ₄ and PTC,		% yield of
x	mmol	mmol (equiv)	mmol (S/C) ^b	time, h	XC6H4COOH
<i>р</i> -СН ₃ О	5	25 (5)	0.05 (100)	12	1 ^{d, e, f}
<i>p</i> -CH ₃	819	4092 (5)	8.2 (100)	12	80^d
Н	925	2313 (2.5)	9.2 (100)	5	81 ^d
p-Br	535	2138 (4)	5.4 (100)	4	86
p-Cl	701	2806 (4)	7.0 (100)	4	87
<i>p</i> -NO ₂	653	2612 (4)	6.5 (100)	4	91

^a Unless otherwise stated, the reaction was run with **30%** H_2O_2 with stirring at 1000 rpm at 90 °C. PTC = [CH₃(n-C₈H₁₇)₃N]HSO₄.

Application in Chemical Synthesis to react with benzylic alcohols

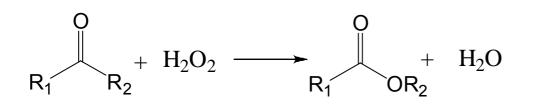
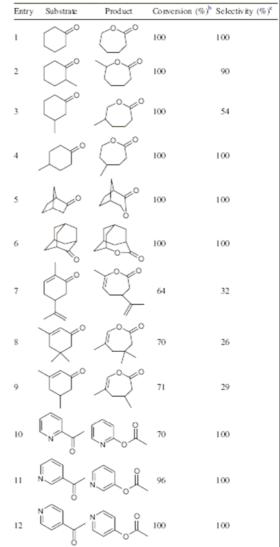

XC6H4C	H ₂ OH	H ₂ O ₂ ,	Na ₂ WO ₄ and PTC,		% yield of	
х	mmol mmol (equiv)		mmol (S/C) ^b time, h		XC6H4CHO	
p-CH ₃ O	724	1086 (1.5)	14.5 (50)	5	90d, e	
p-CH ₃	819	983 (1.2)	4.1 (200)	4.5	91	
o-CH3	819	983 (1.2)	4.1 (200)	4.5	88	
н	925	1018 (1.1)	2.8 (330)	3	87	
p-Br	535	696 (1.3)	2.7 (200)	4.5	81	
p-Cl	701	841 (1.2)	3.5 (200)	4.5	82	
<i>p</i> -NO ₂	5	10 (2)	0.1 and 0.05 (50 and 100)	17	59 ^{6,g,h}	
3,4-Benzo ⁱ	632	759 (1.2)	3.2 (200)	4.5	82 ^{j,k}	

Table 1. Oxidation of benzylic alcohols to benzaldehydes^a

Unless otherwise stated, a 0.1 molar ratio of 5% H_2O_2 to an alcohol was used for activation of the W catalyst, and **30%** H_2O_2 was added dropwise to a mixture of the catalysts and alcoholic substrate with stirring at 1000rpm at 90 °C. PTC = $[CH_3(n-C_8H_{17})_3N]HSO_4$.

Sato, K. et al, tetrahedron letters, 1998, 39, 7549

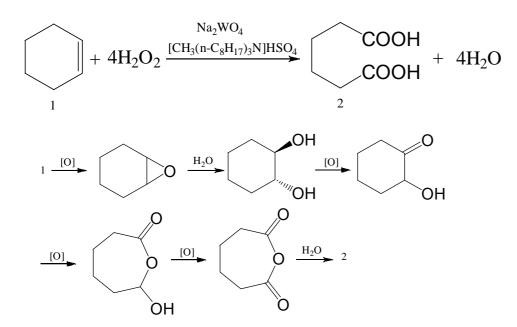
Application in Chemical Synthesis to react with ketones

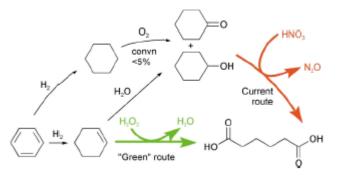


Reaction conditions: ketone: 12 mmol; benzonitrile: 48 mmol; H_2O_2 : 2 equiv (30% v/v aqueous solution); catalyst: 0.1 g; T=70 C; surfactant (DBS): 0.6 mmol.

- ^b Conversion to lactone after 6 h.
- ^c Selectivity to lactone.

 $Mg_{0.80}AI_{0.20}(OH)_2(CO_3)_{0.10}-0.72H_2O.$


• R. Llamas et al. Tetrahedron 2007, 63, 1435


Application in Chemical Synthesis multi-step reaction

 $C_6H_{11}OH/C_6H_{10}O + HNO_3 \longrightarrow$

 $HOOC(CH_2)_4COOH + aN_2 + bNO + cNO_2 + dN_2O$

Thiemens, M. H. et al. Science, **1991**, 251, 932 Sato, K. et al. Science, **1998**, 281, 1646

cyclohexene, **30%** H_2O_2 , Na₂WO₄·2H₂O, and [CH₃(*n*-C₈H₁₇)₃N]HSO₄ as the PTC (the Olefin : W : PTC molar ratio is 100:1:1) , 1000 rpm and temperature 75° to 90°C, 8 hours, yield 93% (GC). The collection of the crystalline product by filtration followed by drying in air produced colorless, analytically pure **2** in 90% yield.

Application in Chemical Synthesis to react with heteroatoms

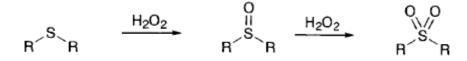


Table 3. Hydrogen peroxide oxidation of sulfides to sulfoxides

Sulfide	Na ₂ WO ₄ , C ₆ H ₅ PO ₃ H ₂ , and PTC, mmol (S/C) ^a	H2O2 mmol (equiv)	Temp. (°C)	Time (h)	% Yield ^b	
	FTC, millior (3/C)				Sulfoxide	Sulfone
$\overline{\sim}_{s}$	-	10 (1.0)	35	18	99	<1
6	_	68.4 (1.0) ^e	35	18	99 ^d	0
∧ ∕ ^S ∖	_	11 (1.1)	0	9	31	0
ÍÌÌ	0.005 (2000)	11 (1.1)	0	9	93	7
	_	10 (1.0)	35	18	99	< 1
÷	_	80.5 (1.0) ^e	35	18	99 ^d	0
	_	11 (1.1)	0	9	39	0
s s	0.005 (2000)	11 (1.1)	0	9	94	6
	_	25 (2.5)	50	12	2	0
	0.005 (2000)	12 (1.2)	25	3	61	21

Unless otherwise stated, reaction was run using sulfide (10 mmol) and 30% H2O2. PTC=[CH3(n-C8H17)3N]HSO4.

^a Substrate/catalysts molar ratio.

^b Determined by ¹H NMR.

^c Reaction was run with 10 g of sulfide.

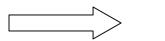
^d Isolated yield.

Application in Chemical Synthesis to react with heteroatoms

Table 2. Hydrogen peroxide oxidation of sulfides to sulfones

Sulfide		H ₂ O ₂ mmol (equiv.)	Na ₂ WO ₄ , C ₆ H ₅ PO ₃ H ₂ , and PTC, mmol (<i>S/C</i>) ^a	Temp. (°C)	Time (h)	% yield of sulfone
Structure	mmol	(equiti)	110, 1110 (0.0)			ounone
~~_s~~	10	25 (2.5)	0.01 (1000)	50	1	95 ^b
$\times_{s} \times$	10	25 (2.5)	0.01 (1000)	50	3	91 ^b
Ċ, s∖	10	25 (2.5)	0.01 (1000)	50	2	97°
	10	25 (2.5)	0.01 (1000)	50	3	88 ^{d.e} , 97 ^{f.g}
$\langle \gamma^{*} \gamma \gamma \rangle$	537 ^h	1343 (2.5)	0.54 (1000)	50	2	96 ⁱ
	53.7	134 (2.5)	0.05 (1000)	50	2 2	92 ⁱ , 99 ^f
• •	53.7	134 (2.5)	0.01 (5000)	50	18	87 ⁱ
s J	10	25 (2.5)	0.01 (1000)	50	24	$90^{\rm d,i}, 98^{\rm df}$
s	10	25 (2.5)	0.01 (1000)	50	10	93 ^{£j}
	10 10	25 (2.5) 25 (2.5)	0.01 (1000) 0.01 (1000)	50 50	12 24	93~ 94°j
0 ₂ N NO ₂	10	20 (200)	0.01 (1000)	50	24	24
\$ \$	10	25 (2.5)	0.01 (1000)	25	2	93°
// · · · ·	10	25 (2.5)	0.005 (2000)	25 25	2 24	97°
\downarrow_{s}	10	25 (2.5)	0.01 (1000)	25	8	95°
IN S OH	•••		A A1 (1660)		,	016
	10	25 (2.5)	0.01 (1000)	25 25	6	91° 91°
~	10	25 (2.5)	0.005 (2000)	23	24	91.
OH S I						
	10	25 (2.5)	0.01 (1000)	25	9	98°

Unless otherwise stated, reaction was run using **30%** H_2O_2 . PTC=[CH₃(n-C₈H₁₇)₃N]HSO₄.


a Substrate/catalysts molar ratio.

b Isolated by recrystallization from hexane.

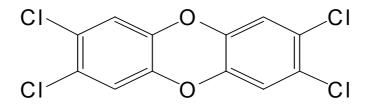
c Isolated by silica-gel column chromatography.

Application in industry

- Pulp and Paper
- Textile

Bleaching

- Detergent
- Environment (Waste Water Treatment)
- Antiseptic
- Metallurgy


Application in industry -- Bleaching

Radical reaction

The color of compounds is a physical property caused by the chemical structure of the molecules.

The decomposition of hydrogen peroxide involves the formation of free radicals. These reactive intermediates oxidize other molecules and destroy the structure which can absorb the light.

Compare with Cl₂, NaClO₂ and NaClO

dioxine

Application in industry -- Environment

Hydrogen peroxide is used in waste water treatment for the removal of hydrogen sulfide (H_2S) , which forms in sewer pipes. The most significant environmental application of hydrogen peroxide is the treatment of a broad variety of industrial wastes . Cyanide (CN), thiocyanate (SCN), nitrite (NO_2) , and organic matter (such as TOC) can be efficiently removed by H_2O_2 treatment.

Application in industry Antiseptic and Metallurgy

$H_2O_2 + CH_2COOH \longrightarrow CH_2COO-OH + H_2O$

Peracetic acid, as a product, it is typically sold as a 5% or 15% active solution for disinfection/sterilization purposes, particularly in the food processing industry.

$H_2O_2 + H_2SO_4 \longrightarrow H_2SO_5 + H_2O_5$

Peroxymonosulfuric Acid is used in the mining and hydrometallurgy industries for digesting ores and separating components, and for destroying cyanide residuals. It is produced onsite at the point of application.

Conclusion

Advantage Prevent Waste Atom Economy Less Hazardous Catalysis

Disadvantage Safety Price

Hydrogen Peroxide is a kind of green oxidant and can be used widely.

Thank You