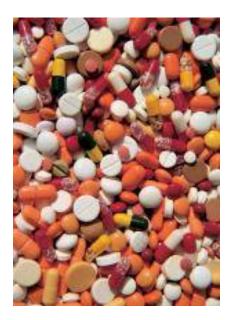

ORGANIC REACTIONS IN AQUEOUS MEDIUM

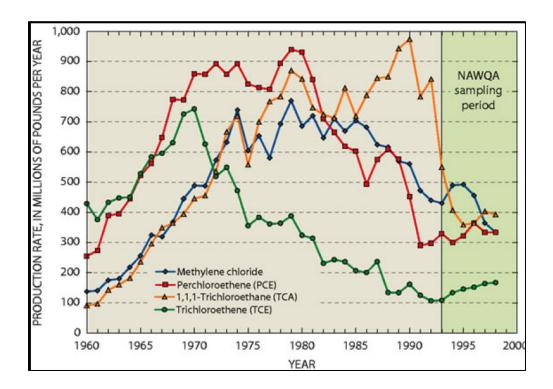

ABHASOOD GREEN CHEMISTRY (CH-671)

USE OF SOLVENTS

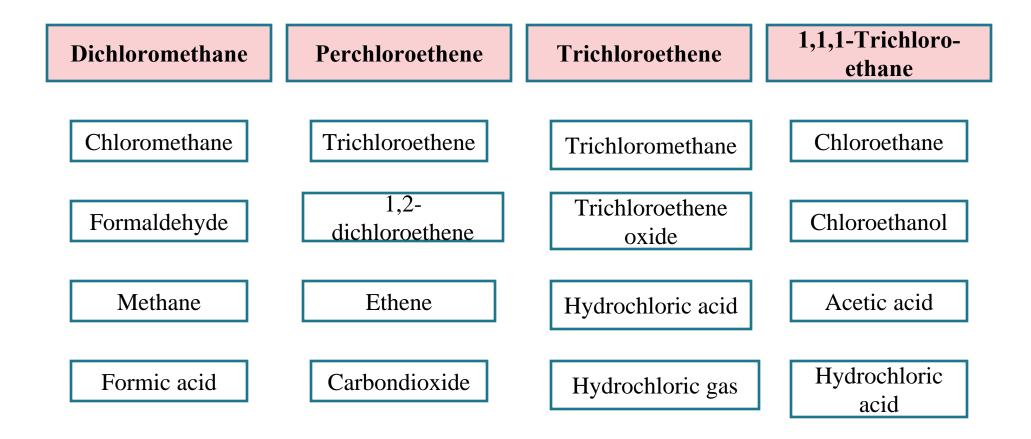
2

- Used for the manufacturing of many health care products such as penicillin, aspirin and cough syrup as well as hundreds of other pharmaceutical products
- Provide reaction medium for manufacturing drugs
- Used for separating the desired product from unwanted material for maximum purity
- Used for applying tablet coatings and in inks to print on pharmaceutical tablets and capsules
- Critical to the manufacturing of numerous drugs and in the continued development of new, life-saving & life enhancing ones

EFFECT OF SOLVENTS ON ENVIRONMENT AND HUMANS


- > Chlorinated solvents (VOC'S) have a short life time thus, cause smog formation
- Some being more dense compared to water , seep deep into the ground water
- Some solvents are known to be hazardous atmospheric pollutants

Regarding their effects on humans


- Cause irritant dermatitis
- Coughing , lung congestion
- Long term use may cause memory loss , depression etc.
- Benzene causes leukemia
- Glycol ethers are reproductive hazards
- Chlorinated solvents, at higher level can cause tumors, unconsciousness and even death

SOLVENTS IN GROUND WATER

- Dichloromethane (DCM)
- Perchloroethylene (PCE)
- Trichloroethene (TCE)
- Trichloroethane (TCA)

FATE OF SOLVENTS IN GROUND WATER

GREEN ALTERNATIVES TO ORGANIC SOLVENTS

- Supercritical carbon dioxide
- Methyl soyate
- Ionic liquids
- Fluorous solvents
- Water

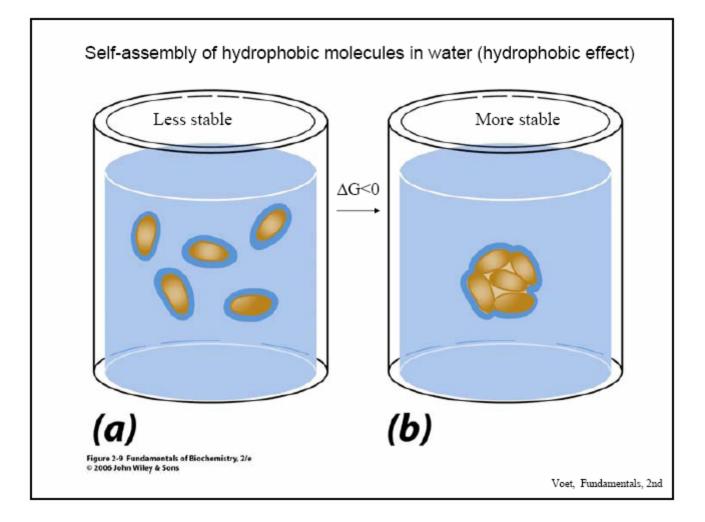
WHY WATER???

- Present in abundance and hence sustainable
- Lack of inflammable, explosive, mutagenic and carcinogenic properties
- Control of reaction temperature is easier because of high heat capacity

PHYSICAL PROPERTIES OF WATER

- Dielectric constant (ϵ_r) of water is high
- Small size
- Low solubility of oxygen in water
- Three dimensional hydrogen bonded network
- High surface tension of water
- High heat capacity

UNIQUE PROPERTY


HYDROPHOBIC EFFECT

Cause:

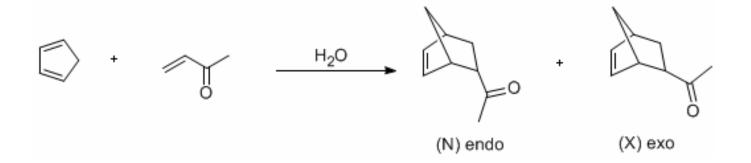
- Entropic contributions
- Enthalpic contributions

.....making organic reactions feasible

ENFORCED HYDROPHOBIC INTERACTIONS

http://www.biology.ucsd.edu/classes/bibc100.SU1.07/objects/ch11_water_solubility.pdf

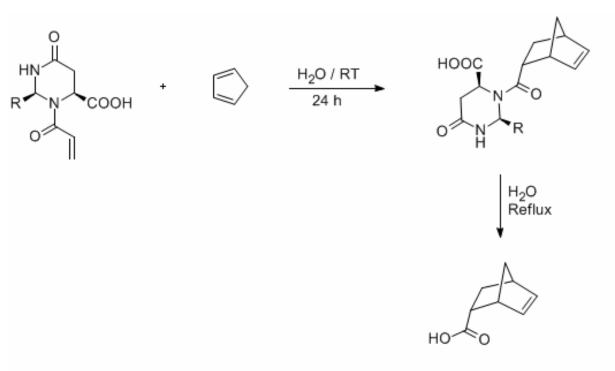
11


HISTORY

- Idea came from the enzymatic reactions taking place in nature using the concept of hydrophobic interactions
- Water chemistry is known since 1930; however, in 1980 Breslow and Rideout first noticed the rate enhancement of certain reactions in water
- Effect of some other reagents along with water termed as *anti-hydrophobic* agents and *pro-hydrophobic* agents were studied
- With more advances in the water chemistry, it became possible to even perform moisture sensitive reactions in water
- In today's times, almost every field of organic chemistry has been touched by the concept of water as the reaction medium

ORGANIC REACTIONS IN WATER

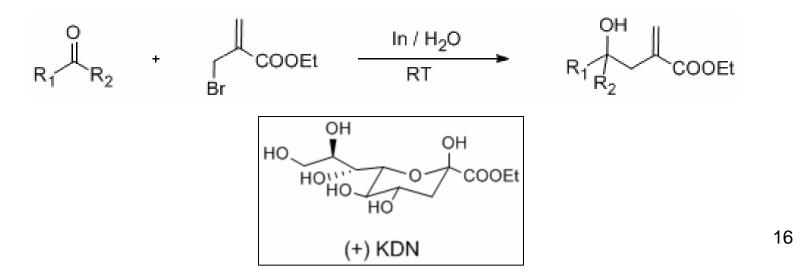
CYCLOADDITION REACTIONS


Rate enhancement of Diel's- Alder reaction

solvent	N/X ratio
Ethanol	8
Water	21

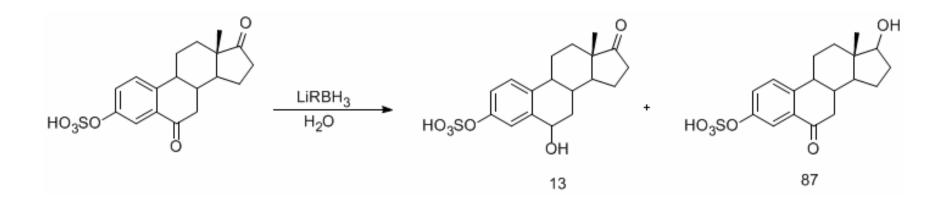
Rate constant in water is 740 times more than in isooctane and 58 times more than in methanol

CYCLOADDITION REACTIONS


5-Norbornene-2-carboxylic acid

R	endo/exo	ee %
<i>i</i> -Pr	93:7	60
<i>t</i> -Bu	82:18	64
Ph	95:5	55

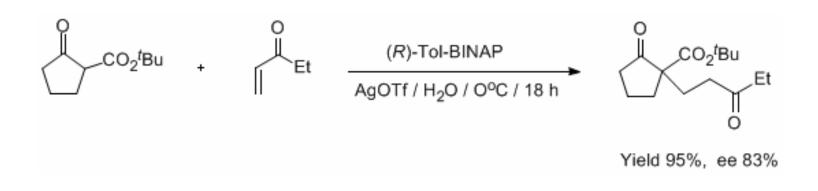
BARBIER-GRIGNARD TYPE REACTIONS



Metal	Yield %
Zn	0
Sn	10 (sonication)
In	70

ATOM TRANSFER REACTIONS

Selective reduction of carbonyl

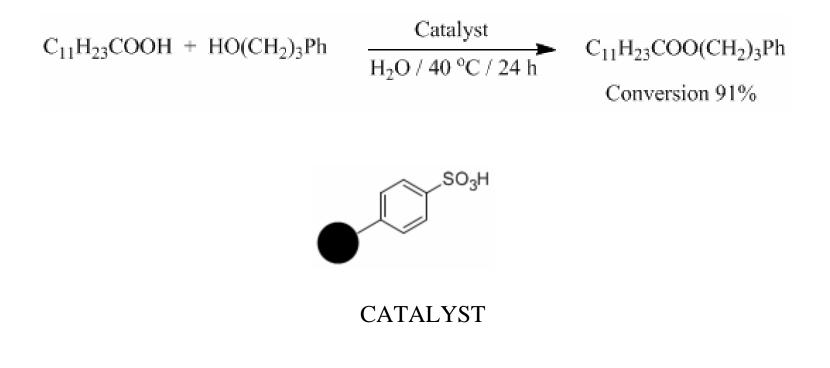

USE OF SURFCTANTS AS CATALYST IN WATER

Use of LASC (having properties of both lewis acid and catalyst)

 $ScCl_{3.}6H_2O + 3 NaOSO_3C_{12}H_{25} \longrightarrow Sc(OSO_3C_{12}H_{25})_3$

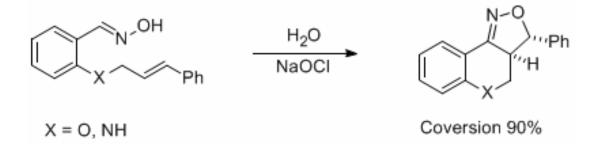
• Kinetic studies revealed that Aldol type reaction is 100 times faster in water than in dichloromethane

ASYMMETRIC CATALYSIS



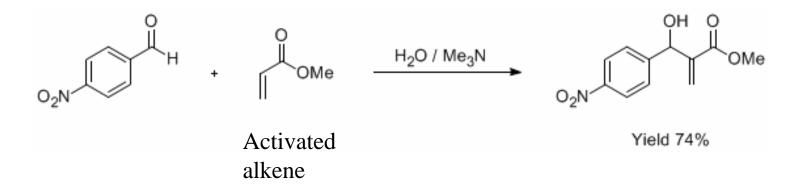
Effect of solvent:

MEDIUM	ee (%)	
Acetonitrile	17	
Tetrahydrofuran	24	
Ethanol	39	
Water	74	

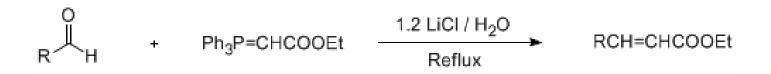

POLYMERIZATION

Dehydrative esterification in water can be effectively catalyzed by hydrophobic Polystyrene supported sulfonic acids as recoverable and re-usable catalysts

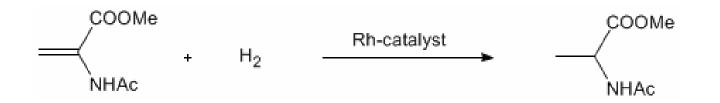
CYCLIZATION REACTIONS


1,3-Dipolar additions

- High yields as well as regio- and chemoselectivities are obtained without the use of solvents
- Products can easily be separated by filtration


BAYLIS-HILLMAN REACTION

Reported in 2002


- Low reaction rates in conventional method
- Using water/solvent system, reaction rates can be greatly enhanced leading to shorter reaction time, lower reaction temperatures and higher yield

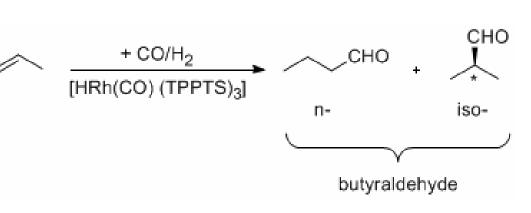
WITTIG REACTION


- Conventionally is carried out in anhydrous condition
- But if used stabilized phosphorus ylides, reaction is faster in water
- Reaction is completed in 5 to 60 minutes
- E/Z selectivity is also very good and similar to toluene

HYDROGENATION REACTION

Solvent	H ₂ pressure (atm)	ee %
MeOH	3	99
H ₂ O	3	99
MeOH-H ₂ O	3	83

BIO-CATALYSIS


- Reaction rates are high even at low substrate concentration in water
- Selectivity is exceptionally high

NEAR CRITICAL WATER

- Water heated to about 200-300^oC
- Decrease in density
- Decrease in dielectric constant, making non polar solutes soluble in water. Simultaneous decrease in solubility of ionic compounds
- Increase in dissociation constant
- Self neutralizing catalytic medium
- Hydrolysis reactions can be easily carried on in such medium
- Acylation reactions making use of lewis acids can be performed in this medium

WATER AS A SOLVENT: AN INDUSTRIAL APPLICATION

TPPTS: triphenylphosphine mtrisulfonate

OTHER INDUSTRIAL APPLICATION

In dry cleaning:

Halogenated hydrocarbons can be replaced by aqueous cleaning solvent.

H₂O + Terpene → Is a good degreasing agent Naturally occurring compound Can be disposed off easily Easier to recycle and reuse than conventional solvents

GREEN ASPECTS AND ADVANTAGES

• Non-hazardous as it is not:

Inflammable Explosive Carcinogenic Mutagenic

- Easy work up procedures
- Need of protection and deprotection can be minimized in water
- Highly polar molecules such as sugars can be directly dissolved in water without any derivatization
- Water soluble catalysts can be reused after separation of insoluble organic products

LIMITATIONS

- Upfront capital costs required for new equipment is high
- Water based systems require high energy usage for drying
- Reactions can't be carried in normal water. It has to be deionized before use and the process is costly and consumes energy

REFERENCES

- Li, C. –J. *Tetrahedron*, **1996**, *52*, 5643.
- Miyamoto, H.; Kimura, T.; Daikawa, N.; Tanaka, K. Green chem. 2003, 5, 57.
- Li, C. Chem. Soc. Rev. 2006, 35, 68.
- Rhyoo, H. Y.; Yoon, Y. A.; Park, H. J. Tetrahedron Lett. 2001, 42, 5045.
- Mori, K.; Mori, H. Org. Synth. 1993, 8, 312.
- Paul, A. G.; Ellen, B. J. Org. Chem. 1989, 54, 5849.
- Sonntag, N. O. V. Chem. Rev. 1953, 52, 237.
- Li, C.; Chan, T. *Tetrahedron*, **1999**, *55*, 11149.
- Hailes, C. Org. Proc. Res. Dev., 2007, 11, 114.
- Koddermann, T.; Schulte, F.; Huelsekopf, M. Angew. Chem. Int. Ed. 2003, 42, 4904.
- Schneider, H. J.; Sangwan, N. K. Angew. Chem. Int. Ed. 1987, 26, 896.
- Lindstrom, U. M. Organic reactions in water, 2007.
- Li, W.; Zhang, Z.; Xiao, D. J. Org. Chem. 2000, 65, 3489.
- Kolb, H. C.; Finn, M. G. Angew. Chem. Int. Ed. 2001, 40, 2004.
- Hayashi, Y.; Sumiya, T. Angew. Chem. Int. Ed. 2006, 45, 958.

THANK YOU