Osorb: A Novel Water Remediation Technique

Sarah Schostarez

6 December 2011

Outline

- Applications
- Background of Oil Spill Cleanup
- Absorbent Material
- Osorb Synthesis
- Swelling Capabilities
- Green Application
- Conclusion

Deepwater Horizon Oil Spill

Talmadge Creek Oil Spill

Cleanup Methods

Containment and Diversion

Mechanical removal

Cleanup Methods

Dispersants/ Chemical Treating Agents

In Situ Burning

Characteristics of a good absorbent

- Hydrophobicity
- Oleophilicity
- High uptake capacity
- High rate of uptake
- Retention over time
- Oil recovery from absorbents
- Reusability and Biodegradability of absorbents

Types of Absorbents

Synthetic Organic Products

- Polypropylene
- Polyurethane

Natural Products

- Rice straw
- Wool Fiber
- Peat moss wood
- Milkweed Floss

Types of Absorbents

Mineral Products

- Silica Aerogels
- Zeolites
- Organophilic Clays
- Osorb

What is Osorb?

- Swellable Organically Modified Silica (SOMS)
- A sol-gel that after drying can swell in a few seconds when placed in an organic solvent

Attributes

- Rate of swelling is mass transport limited
- Uptake of absorbates generates forces >100N/g
- The swelling is completely reversible
- Absorption is non-selective
- Material is Hydrophobic
- Swelling and absorption is driven by the release of stored tensile force

Synthesis of a Sol-Gel

Step 1: Mixing /Gelation

- 0.144 mol bis(trimethoxysilyethyl)benzene added to 220ml Acetone
 - 1.5 mL of 1.0M tetrabutylammonium fluoride in 7.8 mL water

Step 2: Aging and Rinsing

Step 3: Derivatization

5% v/v cyanopropyltrimethylsilane in Acetonitrile

Synthesis of a Sol-Gel

Step 4: Rinse and Dry

Step 5: Grind

Swelling Capability

Absorption of Toluene

Concentration (ppm)	Percent extraction**	Partition coefficient***/103
25	99.8	285
55	98.2	21.8
100	95.9	9.4
210	96.1	9.8
320	94.4	6.7
420	91.9	4.5
530	89.6	3.4
CH ₃	μg TCE abs/mg SOMS	
	11	
	21	
	40	
	82	
	120	
	156	
	190	

P.L. Edmiston, L.A. Underwood. Sep. and Pur. Tech. 2009, 66, 532-540

Absorption of Perchloroethylene

Concentration (ppm)		Partition coefficient/103	μg PCE abs/mg SOMS	
	1.0	4.0 ± 0.8	0.2	
	8.0	6.3 ± 0.8	1.7	
	30	21 ± 1	6.2	
	70	19 ± 4	13.6	
	145	16 ± 2	28.3	

Triggered Matrix Expansion

P.L. Edmiston, L.A. Underwood. Sep. and Pur. Tech. 2009, 66, 532-540

Absorption of Polar Organics

Absorption data for polar organics in water.

Concentration (ppm)	Percent extraction**			
	MTBE	1-Butanol	1,4-Dioxane	Acetone
50	48	21	33	23
100	52	21	33	15
200	53		30	25
500	56	43	18	5
1000	46		24	5
2000	32	25		
10,000	33	26	33	17
20,000	38	18	49***	13***
50,000	34***	24***		

^{*} Mass SOMS/volume solution = 0.5% (w/v). Temperature = 25 °C.

[&]quot; Error <10% (n = 3).</p>

Wisible swelling noted.

Absorption of Other Organic Species

Naphthalene – Solid at standard state

 Phenol – exists in a deprotonated anionic form at environmental pH

Regeneration

- Tested by heating the SOMS that had absorbed either TCE or PCE
- Results: Swelling capacity remained consistent (3.1mL)

TCE and PCE binding affinity after thermal regeneration.

Number of times used	Dissolved contaminant**	Regeneration temperature (°C)	Partition coefficient***/103
0	TCE	n/a*	1.7 ± 0.7
1	TCE	60	0.8 ± 0.2
2	TCE	60	0.9 ± 0.4
1	TCE	110	2.2 ± 0.5
2	TCE	110	1.1 ± 0.2
0	PCE	n/a	11 ± 2
2	PCE	110	9 ± 3

Mass SOMS/volume H₂O = 0.5% (w/v). Temperature = 25 °C.

^{**} TCE concentration = 1200 ppm; PCE concentration = 15 ppm.

[&]quot; n = 3 for all measurements.

Absorption from Natural Waters

- Salt does not inhibit absorption
- Water/Topsoil mixture does not absorb as well as pure water mixture
- Leaves behind water, proteins, genetic material, and inorganic salts

How is this green?

- 1. Waste Prevention
- 2. Atom Economy
- 3. Less Hazardous Chemical Process
- 4. Designing Safer Chemicals
- 5. Safer Solvents and Auxiliaries
- 6. Energy Efficiency
- 7. Renewable Feedstocks
- 8. Reduce Derivatives
- 9. Catalysis
- 10. Design for Degradation
- 11. Real-time Analysis for Pollution Prevention
- 12. Safer Chemistry for Accident Prevention

Conclusion

- SOMS are highly effective in absorbing organic species from water
- SOMS can be tailored to target specific contaminants
- Work is being done to explore more uses of Osorb

References

- C.M. Burkett, P.L. Edmiston. J. Non-Cryst. Solids 2005, 351, 3174-3178.
- C.M. Burkett, L.A. Underwood, R.S. Volzer, J.A. Baughman, P.L. Edmiston. Chem. Mater. 2008, 20, 1312-1321.
- P.L. Edmiston, L.A. Underwood. Sep. and Pur. Tech. 2009, 66, 532-540.
- M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot. J. Por. Mat. 2003, 10, 158-170.
- M. Fingas. Chem. And Ind. 1995, 24, 1005.

