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Global Climate Change



The Greenhouse Effect and Global Warming

These are NOT the same thing!

To begin with, let's make the distinction



Venus
Average temperature 450°C
Average pressure: 90 atm
Atmosphere 96% CO,
Clouds of Sulfuric Acid

Earth
Average temperature 15°C
Average pressure: 1 atm
Atmosphere 78% N,
Clouds of Water




The Greenhouse Effect

g \
' 'Y
o '
o ‘
' @
T ; .
1}
& . '
o ' Incoming * Outgoi
g E . going
- ¢ solarlight light from Earth
.| (UV, visible, IR) ‘\ (thermal IR)
o
deq 1 1,0l 1] M AP B B N
‘ 0.1 0.2 0.3 AO.S u1.0 1.52 3 5 10 1520 30 501
UV  Visible light Infrared light

Wavelength (pum)

Figure 4-1
Environmental Chemistry, Third Edition
© 2005 W.H.Freeman and Company

Blackbodies emit a broad spectrum centered around A ., = 2897/T

Ao (sun)=A__(5800K)=0.50 pm A (earth)=A__ (300K)=10 pm
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Figure 4-6 Ok, that’s the Greenhouse Effect.
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So what’s global warming?



CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN HEMISPHERE SNow COVER
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CHANGES IN TEMPERATURE, SEA LEVEL AND NoRTHERN HEMISPHERE Snow COVER
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Figure SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and
satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for
the period 1961-18990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the
uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). {FAQ 3.1,
Figure 1, Figure 4.2, Figure 5.13} 8



Temperature and CO, concentration in the atmosphere over the past 400 000 years

ey (from the Vostok ice core)
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Anthropogenic carbon dioxide emissions over time
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G tuall

Is gas water soluble Yes " r;z::::oua y
or fully oxidized? Esrtlis Siifface

lNo
Does gas Yes
photodecompose
in sunlight?

lNo
Do gas molecules Yes Free radicals

have multiple bonds

lNo

Do gas molecules
have an H that OH’

> are produced

that OH' can add t6? OH' addition occurs (see Fig.3-1b)

Yes

exothermic reaction?

lNo

Gas is inertin troposphere;
will rise to stratosphere

Figure 3-1a
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can abstractin an OH abstraction occurs
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Indicators of the human influence on the atmosphere

during the Industrial Era

(a) Global atmospheric concentrations of three well mixed
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GHy (ppb) GO, (ppm)

NeO (ppb)

380
340
320
300
280
260

1750

1500

1250

1000
750

310

290

270

250

greenhouse gases

o ¢ pp RTTOEg f yaE

| Carbon dioxide

| Methane

1000

15

410

05

0.0

los

[ Nitrous oxide 015
i 010
B ¥

=_ 005
B ‘.‘“ |
X *s : [ ‘: - » 400

-. -. » ..- [ ] - -
- - - - g |
1200 1400 1800 1800 2000
Year

Radiative forcing (Wm—)

15



TABLE 4-1 Summary of Information About Some
Greenhouse Gases

Relative global

warming
Current Residence time, efficiency,
Gas concentration in years 100-year horizon
CO, 373 ppm 50-200 1
CH, 1.77 ppm 12 23
N,O 316 ppb 120 296
CFC-11 0.26 ppb 45 4600
HCFC-22 0.15 ppb 12 1700
HFC-134a 0.01 ppb 14 1300
Halon-1301 0.003 ppb 65 6900

Table 4-1
Environmental Chemistry, Third Edition
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What makes for an effective Greenhouse Gas?

1) The gas must absorb IR radiation

This requires the vibrations of the
molecule to induce a change in dipole
moment

Homonuclear diatomics (N,, O,) cannot
absorb IR

The greater the change in the dipole, the
greater the IR absorption
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What makes for an effective Greenhouse Gas?

2) The gas must absorb IR radiation that isn’t
already being absorbed!

The absorption of species which are
currently in low concentrations are more
Impacted by new emissions

Species which absorb at the same
wavelengths as CO, and H,O are quite
inefficient

“The Atmospheric Window” from 8 to 13 um
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What makes for an effective Greenhouse Gas?

3) The gas must have a significant lifetime in
the atmosphere

How can we calculate the residence time of
a species?
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Residence Time and Steady State

The extent to which a substance accumulates in the
atmosphere depends on two factors:

The rate at which it is released (source), and
The rate at which it is consumed (sink)

In general the release rate is constant and
independent of concentration. Let’'s call it R

The rate at which it is consumed depends on
chemical loss processes. |f we assume a single
first-order reaction as a sink, we can call the loss
rate kC.

At some time before we start to emit any of this
compound into the atmosphere, C,=0.

Thus, the Initial loss rate is also O, but increases as
C(t) increases
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Residence Time and Steady-State

The loss rate increases
as the concentration
Increases, but the
release rate is
constant

Eventually, the loss
rate increases to the
point where it equals
the release rate, and
steady state
concentration is
achieved
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Residence Time and Steady-State

If we somehow eliminate the source term, C will
decrease exponentially as a first-order reaction

If we go through the (simple) calculus starting
from dC/dt = -kC, we can obtain an expression
for C(t) relative to Css

C(t) = Coce™ C(t)/Cqq = €Kt

It is useful (read: traditional) to define “residence
time” as the time it takes for the concentration
of a species to fall to 1/e of its original value

1/e = e

In( e!) = -kt

g = 1/K
And thus, Cgg = R™t,,, Or t,,, = Css/R

avg
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Greenhouse Gases: Water Vapor
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Greenhouse Gases: Methane
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Greenhouse Gases: Methane

Emissions:
/0% of current emissions are anthropogenic
Natural gas leaks
Coal mines
Oil refineries
Ruminants
Anaerobic decomposition of plant matter
natural and created wetlands, landfills
Burning of biomass
Rice production
The Future:

Positive feedback? From increased rates, but also
thawing permafrost
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Greenhouse Gases: N,O

Emissions:
<40% of current emissions are anthropogenic
Release from oceans
Nitrification/denitrification of plants
including that induced by fertilizer
Growth of new grasslands
including that induced by deforestation
Fabrication of nylon
Consumption of coal, biomass
Consumption of gasoline without catalytic converters

No tropospheric sinks

The Future:

Positive feedback again? From increased rates, but also
thawing permafrost
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Greenhouse Gases: SF;

Emissions:
Almost entirely anthropogenic
Used as an insulating gas in electrical industry

Exceedingly long-lived
Very strong absorber

The Future:
Emissions have largely ceased, but concentrations remain

Greenhouse Gases: O,

Emissions:
Largely anthropogenic, from polluted urban air
Also from forest fires, grass fires, lightning
Perhaps 10% of all global warming is induced by ozone
The Future:
Unknown — unlikely to change significantly in the short term
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Greenhouse Gases: CFCs
Sources have been discussed

Net effect is small: while they absorb IR
themselves, they also cool the stratosphere by
hindering the Chapman mechanism

Use of CFCs in refrigerants reduced the energy
requirements of those machines, reducing CO,
emissions

The Future:

CFCs themselves will clearly decline in
Importance

How important will HCFCs and HFCs be?
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Additional Signs of Climate Change over the last 100 years

The 12 hottest years on record have all occurred since 1995
Winters (first frost to last) have become shorter by about 11 days
Fewer “frost days” endanger permafrost
The Earth’s ice cover is rapidly shrinking
About 10% of winter snow cover and sea ice is gone
Warming water is killing coral reefs and other sea life

95% of coral bleached in Seychelles, now spreading to
Caribbean

Mosquito-borne diseases have spread to higher altitudes
Dengue fever in Central America

Malaria in Texas, Florida, Michigan, New York, New Jersey,
Ontario

Rising sea levels threaten Pacific islands
Average level has risen more than 10 cm since 1940

Extreme weather is becoming more common — both in frequency
and in intensity

Hurricanes, blizzards, heat waves, drought

What does the future hold? 31



